Mass Transport and Heat Transfer

  • Franz E. Rosenberger
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 5)

Abstract

Macroscopic mass and heat transport play a central role in crystal growth processes. Before “molecules proceed from a position in the fluid medium, just outside the crystal-fluid interface, to their (relatively) permanent resting place in the crystal surface” [5.1], i.e., before molecules are “attached” to the crystal, they must typically be transported in the fluid over macroscopic distances towards the interface. This transport can be either fast or slow compared to the attachment kinetics. Then the rate with which a crystal grows is limited by interfacial kinetics or by the macroscopic transport, respectively. Interfacial growth mechanisms and their kinetics are the subject of later chapters. In this chapter we concern ourselves with the macroscopic transport part of crystal growth processes. Emphasis is put on the fundamentals of the various transport modes, their distinction and interplay. The general concepts obtained will then be applied to more specialized configurations and geometries in the later chapters on segregation, morphological stability, and growth from melts, vapors and solutions.

Keywords

Fluoride Calcite Carbon Monoxide Rutile Compressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    R.L. Parker:“”Crystal Growth Mechanisms: Energetic, Kinetic, Trans-port“, in Dolid State Physics, Vol. 25, ed. by H. Ehrenreich, F. Seitz, D. Turnbull ( Academic Press, New York 1970 ) pp. 151–299Google Scholar
  2. 5.2
    R.B. Bird, W.W. Stewart, E.N. Lightfoot::“ra;spor. Phe~:or7ena (Wiley,New York 1960 )Google Scholar
  3. 5.3
    J.G. Kirkwood, R.L. Baldwin, P.J. Dunlop, L.J. Gosting, G. Kegeles:Flow equations and frames of reference for isothermal diffusion in liquids. J. Chem. Phys. 33, 1505 (1960)Google Scholar
  4. 5.4
    C.J. Geankoplis: Mass Transport Phenomena ( Ohio State University Book-store, Columbus 1972 )Google Scholar
  5. 5.5
    D.D. Fitts: Ilonequilibriom Thermodynamics ( McGraw-Hill, New York 1962 )Google Scholar
  6. 5.6
    W.R. Wilcox: “A Generalized Treatment of Mass Transfer in CrystalGrowth”, in Preparation and Properties of Solid State Materials, Vol. 2, ed. by W.R. Wilcox ( Marcel Dekker, New York 1976 ) p. 129Google Scholar
  7. 5.7
    J.0. Hirschfelder, C.F. Curtiss, R.B. Bird: Molecular Theory of Gases,znd Liquids ( Wiley, New York 1954 )Google Scholar
  8. 5.8
    I. Prigogine: Introduction to Thermodynamics of Irreversible Processes ( Wiley, New York 1967 ).Google Scholar
  9. P. Glansdorff, I. Prigogine: Thermodynamic Theory of Structure, Stability and Fluctuations ( Wiley, New York 1971 )Google Scholar
  10. 5.9
    S.R. DeGroot, P. Mazur: rlonequi7ibrium _hermodyaanies (North Holland,Amsterdam 1969 )Google Scholar
  11. 5.10
    G.H. Westphal, F. Rosenberger: On diffusive-advective interfacial mass transfer. J. Crystal Growth 43, 687 (1978)Google Scholar
  12. 5.11
    J. Stefan: Über die Verdampfung aus einem kreisförmig oder elliptisch begrenzten Becken. Ann. Physik und Chemie 17, 550 (1882)Google Scholar
  13. 5.12
    M.M. Faktor, I. Garett: Growth of Crystals from the Vapor ( Chapmann and Hall, London 1974 ) p. 218Google Scholar
  14. 5.13
    J. Bardeen, C. Herring: “Diffusion in Alloys and the Kirkendall Effect”, in Imperfections in Nearly Perfect Crystals (Wiley, New York 1952) p. 261 ffGoogle Scholar
  15. 5.14
    W.R. Wilcox: “The Role of Mass Transfer in Crystallization Processes”,in Preparation and Properties of Solid State Materials, Vol. 1, ed. byR.A. Lefever ( Marcel Dekker, New York 1971 )Google Scholar
  16. 5.15
    S. Bretsznajder: Prediction of Transport and Other Physical Properties of Fluids ( Pergammon Press, New York 1971 )Google Scholar
  17. 5.16
    J.C. Brice: The Growth of Crystals from the Melt ( North-Holland Publishing Company, Amsterdam 1965 )Google Scholar
  18. 5.17
    W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics, 2nd ed. ( John Wiley and Sons, New York 1976 )Google Scholar
  19. 5.18
    K.E. Grew, T.L. Ibbs: Thermal Diffusion in Jases ( Cambridge University Press, Cambridge 1952 )Google Scholar
  20. 5.19
    H.J.V. Tyrell: Diffusion and Heat Flow in Liquids ( Butterworth, London 1961 )Google Scholar
  21. 5.20
    P.J. Shlichta, R.E. Knox: Growth of crystals by centrifugation. J. Crystal Growth 3 /4, 808 (1968)Google Scholar
  22. 5.21
    H. Schlichting: Boundary-Layer Theory, 6th ed. ( McGraw-Hill, New York 1968 )Google Scholar
  23. 5.22
    I.G. Currie: Fundamental Mechanics of Fluids ( McGraw-Hill, New York 1974 )Google Scholar
  24. 5.23
    W.G. Cochran: The flow due to a rotating disc. Proc. Cambr. Phil. Soc. 30, 365 (1934)Google Scholar
  25. 5.24
    V.G. Levich: Physicochemical Hydrodynamics ( Prentice-Hall, Englewood Cliffs, NJ 1962 )Google Scholar
  26. 5.25
    H.S. Lew, Y.C. Fung: Entry flow into blood vessels at arbitrary Reynolds numbers. J. Biomechanics 3, 24 (1970)Google Scholar
  27. 5.26
    R.A. Svehla: “Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures; Tech. Rpt. TR R-132, NASA (1962)Google Scholar
  28. 5.27
    R.C. Reid, T.K. Sherwood: The Properties of Gases and Liquids ( McGraw-Hill, New York 1958 )Google Scholar
  29. 5.28
    Y.S. Touloukian, S.C. Saxena, P. Hestermanns: ’Thermophysical Properties of Matter, Vol. 11, Viscosity ( Plenum Press, New York 1975 )Google Scholar
  30. 5.29
    A. Klemm: “Transport Properties of Molten Salts”, in Molten Salt Chemistry, ed. by M. Blander ( Interscience, New York 1964 )Google Scholar
  31. 5.30
    R.T. Beyer, E.M. Ring: The Viscosity of Liquid Metals“, in Liquid Metals, ed. by S.Z. Beer ( Marcel Dekker, New York 1972 )Google Scholar
  32. 5.31
    G.V. Samsonov (ed.): Handbook of the Physicochemical Properties of the Elements ( Plenum Press, New York 1968 )Google Scholar
  33. 5.32
    D. Elwell, H.J. Scheel: Crystal Growth from High-Temperature Solutions ( Academic Press, London 1975 )Google Scholar
  34. 5.33
    J.L. Bates, C.E. McNeilly, J.J. Rasmussen: “Ceramics in Severe Environments”, in Materials Science Research, Vol. 5, ed. by W.W. Kriegel, H. Palmour III ( Plenum Press, New York 1971 ) pp. 11–26Google Scholar
  35. 5.34
    E.W. Washburn (ed.): International Critical Tables, Vol. 7 (McGraw-Hill, New York 1930 ) p. 212Google Scholar
  36. 5.35
    R.C. Keezer, C.H. Griffiths, J.P. Vernon: Crystal growth phenomena in the selenium — tellurium system. J. Crystal Growth 3 /4, 755 (1968)Google Scholar
  37. 5.36
    K.A. Jackson, D.R. Uhlmann, J.D. Hunt: On the nature of crystal growth from the melt. J. Crystal Growth 1, 1 (1967)Google Scholar
  38. 5.37
    B. Predel: Thermodynamische Eigenschaften, Diffusionsverhalten and Viskosität von Legierungsschmelzen. Z. Metallk. 63, 63 (1972)Google Scholar
  39. 5.38
    L.I. Gvozdeva, A.P. Lyubimov: Variation of viscosity in systems of eutectic type. Russ. J. Phys. Chem. 43, 314 (1969)Google Scholar
  40. 5.39
    V.P. Elyutin, V.I. Kostikov, B.S. Mitin, Yu.A. Nagibin: Viscosity of alumina. Russ. J. Phys. Chem. 43, 316Google Scholar
  41. 5.40
    E.L. Cussler: Multicomponent Diffusion ( Elsevier, Amsterdam 1976 )Google Scholar
  42. 5.41
    D.B. Spalding, H.L. Evans: Mass transfer through laminar boundary layers. Part 3. Similar solutions of the b-equation. Int. J. Heat Mass Transfer 2, 314 (1961).Google Scholar
  43. H.L. Evans: Part 8. Further solutions to the velocity equation. Int. J. Heat Mass Transfer 5, 373 (1962)Google Scholar
  44. D.B. Spalding, W.M. Pun, S.W. Chi: Further exact similarity solutions of the b-equation. Int. J. Heat Transfer 5, 79 (1962)Google Scholar
  45. 5.42
    J.C. Brice: ‘nhe Jrovt8 of Crystals fro g^ rigaids ( North-Holland Publishing Company, Amsterdam 1973 )Google Scholar
  46. 5.43
    E.M. Sparrow, J.L. Gregg: Heat transfer from a rotating disk to fluids of any Prandtl number. J. Heat Transfer 81, 249 (1959)Google Scholar
  47. 5.44
    E.M. Sparrow, J.L. Gregg: Mass transfer, flow and heat transfer about a rotating disk. J. Heat Transfer 82, 294 (1960)Google Scholar
  48. 5.45
    W. Nernst: Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. 47, 52 (1904).Google Scholar
  49. E. Brunner: Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. 47, 56 (1904)Google Scholar
  50. 5.46
    J.W. Mullin: Crystallization ( Butterworth, London 1972 ) p. 203Google Scholar
  51. 5.47
    H.S. Carslaw, J.C. Jaeger: Conduction of Heat in Solids, 2nd ed. ( Oxford University Press, New York 1959 )Google Scholar
  52. 5.48
    J. Crank: The ilathematics of Diffusion, 2nd ed. ( Clarendon Press, Oxford 1975 )Google Scholar
  53. 5.49
    E.R.G. Eckert, T.F. Irvine, Jr.: “Heat Transfer Reviews for 1953–1969”, in Progress in Heat and:lass Transfer, Vol. 3 ( Pergamon, Oxford 1971 )Google Scholar
  54. 5.50
    E.R.G. Eckert, T.F. Irvine, Jr.: “Heat Transfer Reviews 1970–1975” in Progress in Heat and Mass Transfer, Vol. 8 ( Pergamon, Oxford 1977 )Google Scholar
  55. 5.51
    Y.S. Touloukian, P.E. Liley, S.C. Saxena: Thermophysical Properties of Natter, Vol. 3, Thermal Conductivity — Nonmetallic Liquids and Gases ( Plenum Press, New York 1970 )Google Scholar
  56. 5.52
    N.V. Tsederberg: Thermal Conductivity of Gases and Liquids (MIT Press, Cambridge, Ma 1965 )Google Scholar
  57. 5.
    Y.S. Touloukian, T. Makita: Thermophysical Properties of Matter,Vol.Google Scholar
  58. 5.54
    Y.S. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolaou: Thermophysical Properties of Matter, Vol. 10, Thermal Diffusivity ( Plenum Press, New York 1973 )Google Scholar
  59. 5.55
    R. Siegel, J.R. Howell: Thermal Radiation Heat Transfer ( McGraw-Hill, New York 1972 )Google Scholar
  60. 5.56
    M.N. Ozisik: Radiative Transfer and Interactions With Conduction and Convection ( Wiley-Interscience, New York 1973 )Google Scholar
  61. 5.57
    E.M. Sparrow, R.D. Cess: Radiation Heat Transfer (Brooks/Cole Publishing Company, Belmont 1970 ) Revised EditionGoogle Scholar
  62. 5.
    Y.S. Touloukian, D.P. DeWitt: Thermophysical Properties of Matter,Vol.Google Scholar
  63. 5.
    Y.S. Touloukian, D.P. DeWitt: ThermophysicaZ Properties of Matter,Vol.Google Scholar
  64. 5.60
    M. Planck: The Theory of Heat Radiation (Dover, New York 1959 ) English translation of “Vorlesungen über die Theorie der Wärmestrahlung”, Leipzig 1923Google Scholar
  65. 5.61
    E.R.G. Eckert, R.M. Drake: Analysis of Mass and Heat Transfer ( McGraw-Hill, New York 1972 )Google Scholar
  66. 5.62
    S. Goldsztaub, R. Itti, F. Mussard: Role de la diffusion dans la croissance des cristaux à partir de solutions. J. Crystal Growth 6, 130 (1970)Google Scholar
  67. 5.63
    T.K. Sherwood, R.L. Pigford, C.R. Wilke: Mass Transfer ( McGraw-Hill, New York 1975 )Google Scholar
  68. 5.64
    W.R. Wilcox: Validity of the stagnant film approximation for mass transfer in crystal growth and dissolution. Mat. Res. Bull. 4, 265 (1969)Google Scholar
  69. 5.65
    T.B. Reed: Transparent furnace for vapor crystal growth. Solid State Res. Lincoln Lab. MIT 1, 21 (1969)Google Scholar
  70. 5.66
    R. Viskanta, E.E. Anderson: “Heat Transfer in Semitransparent Solids”, in Advances in Heat Transfer, Vol. 11, ed. by T.F. Irvine, Jr., J.P. Hartnett (Academic Press, New York 1975 )Google Scholar
  71. 5.67
    L.I. Rubinstein: The Stefan Problem, Transl. Mathem. Mcncgraphs, Vol. 27 ( American Mathematical Society, Providence 1971 )Google Scholar
  72. 5.68
    S.G. Bankoff: Heat conduction or diffusion with change of phase. Adv. Chem. Eng. 5, 75 (1964)Google Scholar
  73. 5.69
    J.C. Muehlbauer, J.E. Sunderland: Heat conduction with freezing or melting. Appl. Mech. Rev. 18, 951 (1965)Google Scholar
  74. 5.70
    American Institute of Physics Handbook, 3rd., ed. by D.E. Gray ( McGraw-Hill, New York 1972 )Google Scholar
  75. 5.71
    M.G. Velarde. Velarde: “Hydrodynamic Instabilities in Isotropic Fluids”, in Fluid Dynamics, Les Houches, Z973, ed. by R. Balian, J.L. Peube ( Gordon and Breach, New York 1977 )Google Scholar
  76. 5.72
    H. Bénard: Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent. Ann. Chim. Phys. 23, 62 (1901)Google Scholar
  77. 5.73
    E.L. Koschmieder: On convection on a uniformly heated plane. Beitr. Phys. Atmosph. 39, 1 (1966)Google Scholar
  78. 5.74
    Lord Rayleigh: On the convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. 32, 529 (1916)Google Scholar
  79. 5.75
    M.J. Block: Surface tension as a cause of Bénard cells and surface deformation in a liquid film. Nature 178, 650 (1956)Google Scholar
  80. 5.76
    J.R.A. Pearson: On convection cells induced by surface tension. J. Fluid Mech. 4, 489 (1958)Google Scholar
  81. 5.77
    E.L. Koschmieder: “Bénard Convection” in Advances in Chemical Physics, Vol. 26, ed. by I. Prigogine, S.A. Rice ( John Wiley and Sons, New York 1973 ) p. 177Google Scholar
  82. 5.78
    C.O. Hoard, C.R. Robertson, A. Acrivos: Experiments on the cellular structure in Bénard convection. Intern. J. Heat Mass Transfer 13, 839 (1970)Google Scholar
  83. 5.79
    R. Krishnamurti: Finite amplitude convection with changing mean temperature. J. Fluid Mech. 33, 445 and 457 (1968)Google Scholar
  84. 5.80
    T.C. Bannister, P.G. Grodzka, L.W. Spradley, W.V. Bourgeois, R.O. Hedden, B.R. Facemire: Apollo 17 heat flow and convection experiments, final data analysis results. NASA Technical Memorandum X - 64772 (1973)Google Scholar
  85. 5.81
    J.R. Carruthers: “Thermal Convection Instabilities Relevant to Crystal Growth from Liquids” in Preparation and Properties of Solid State Vote-rials, Vol. 3, ed. by W.R. Wilcox, R.A. Lefever ( Marcel Dekker, New York 1977 )Google Scholar
  86. 5.82
    J.R. Carruthers: “Origins of convective temperature oscillations in crystal growth melts.” J. Crystal Growth 32, 13 (1976)Google Scholar
  87. 5.83
    H.v. Tippelskirch: Über Konvektionszellen, insbesondere in flûssigem Schwefel. Beitr. Physik Atmosph. 29, 37 (1956)Google Scholar
  88. 5.84
    S. Chandrasekar: Hydrodynamic and Hydromagnetic Stability ( Clarendon Press, Oxford 1961 )Google Scholar
  89. 5.85
    J. Boussinesq: Théorie analytique de chaleur, Vol. 2 ( Gauthier-Villars, Paris 1903 )Google Scholar
  90. 5.86
    J. Mihaljan: A rigorous exposition of the Boussinesq approximation ap- plicable to a thin layer of fluid. Astrophys. J. 136, 1126 (1962)Google Scholar
  91. 5.87
    A. Oberbeck: Über die Wärmeleitung der Flüssigkeiten bei der Berücksich-tigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271 (1879)Google Scholar
  92. 5.88
    A. Pellew, R.V. Southwell: On maintained convective motion in a fluid heated from below. Proc. Roy. Soc. 176, 312 (1940)Google Scholar
  93. 5.89
    A.S. Eddington: Internal Constitution of the Stars ( Cambridge University Press, London 1926 ) p. 201Google Scholar
  94. 5.90
    E. Palm: Nonlinear thermal convection. Ann. Rev. Fluid Mech. 7, 39 (1975)Google Scholar
  95. 5.91
    J.T. Stuart: Nonlinear stability theory. Ann. Rev. Fluid Mech. 3, 347 (1971)Google Scholar
  96. 5.92
    B. Gebhardt: “Natural Convection Flows and Stability” in Advances in Heat Transfer, Vol. 9, ed. by T.F. Irvine, Jr., J.P. Hartnett ( Academic Press, New York 1973 ) p. 273Google Scholar
  97. 5.93
    D.D. Joseph: On the stability of Boussinesq equations. Arch. Ration. Mech. Anal. 20, 59 (1965)Google Scholar
  98. 5.94
    D.T.J. Hurle, E. Jakeman, E.R. Pike: On the solution of the Bénard Problem with Boundaries of Finite Conductivity, Proc. Roy. Soc. 296A 469 (1967)Google Scholar
  99. 5.95
    E.A. Spiegel, G. Veronis: On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442 (1960)Google Scholar
  100. 5.96
    R.J. Schmidt, S.W. Milverton: On the instability of a fluid when heated from below. Proc. Roy. Soc. 152A 586 (1935)Google Scholar
  101. 5.97
    E. Jakeman: Convective instability in fluids of high thermal diffusivity. Phys. Fluids 11, 10 (1968)Google Scholar
  102. 5.98
    E.L. Koschmieder, S.G. Pallas: Heat transfer through a shallow horizontal convecting fluid layer. Int. J. Heat Mass Transfer, 17, 991 (1974)Google Scholar
  103. 5.99
    C. Christophorides, S.H. Davis: Thermal instability with radiative transfer. Phys. Fluids 13, 322 (1970)Google Scholar
  104. 5.100
    D.L. Turcotte, A.T. Hsui, K.E. Torrance, G. Schubert: Influence of viscous dissipation on Bénard convection. J. Fluid Mech. 64, 369 (1974)Google Scholar
  105. 5.101
    J.D. Verhoeven: Convection effects in the capillary reservoir technique for measuring liquid metal diffusion coefficients. Trans. Met. Soc. AIME 242, 1937 (1968)Google Scholar
  106. 5.102
    S. Ostrach: “Laminar Flows with Body Forces” in Theory of Laminar Flows, ed. by F.K. Moore, Vol. 4 of High Speed Aerodynamics and Jet Propulsion (Princeton University Press, Princeton 1964 )Google Scholar
  107. 5.103
    E.H. Cheng, M.N. Özisik: Radiation with free convection in an absorbing, emitting and scattering medium. Int. J. Heat Mass Transfer 15, 1243 (1972)Google Scholar
  108. 5.104
    R. Krishnamurti: Some further studies on the transition to turbulent convection. J. Fluid Mech. 60, 285 (1973)Google Scholar
  109. 5.105
    F.H. Busse, J.A. Whitehead: Instabilities of convection rolls in a high Prandtl number fluid. J. Fluid Mech. 47, 305 (1971)Google Scholar
  110. 5.106
    R.M. Clever, F.H. Busse: Transition to time dependent convection. J. Fluid Mech. 65, 625 (1974)Google Scholar
  111. R. Krishnamurti: Some further studies on the transition to turbulent convection. J. Fluid Mech. 60, 285 (1973)Google Scholar
  112. 5.108
    J.W. Elder: The unstable thermal interface. J. Fluid Mech. 32, 69 (1968)Google Scholar
  113. 5.109
    F.H. Busse: The oscillatory instability of convection rolls in a low Prandtl number fluid. J. Fluid Mech. 52, 97 (1972)Google Scholar
  114. 5.110
    R. Krishnamurti: On the transition to turbulent convection. Part 1. The transition from two-to three-dimensional flow. J. Fluid Mech. 42, 295 (1970)Google Scholar
  115. 5.111
    R. Krishnamurti: On the transition to turbulent convection. Part 2. The transition to time-dependent flow. J. Fluid Mech. 42, 309 (1970)Google Scholar
  116. 5.112
    R.V. Birikh, G.Z. Gershuni, E.M. Zhukhovitskii, R.M. Rudakov: Hydrodynamic and thermal instability of a steady convective flow. J. Appl. Math. Mech. (PPM) 32, 246 (1968)Google Scholar
  117. 5.113
    G.Z. Gershuni, E.M. Zhukhovitskii: Stability of plane-parallel convective motion with respect to spatial perturbations. J. Appl. Math. Mech. (PPM) 33, 830 (1969)Google Scholar
  118. 5.114
    S.A. Korpela: A study on the effect of Prandtl number on the stability of the conduction regime of natural convection in an inclined slot. Int. J. Heat Mass Transfer 17, 215 (1974)Google Scholar
  119. 5.
    J.E. Weber: On thermal convection between non-uniformly heated plates. Int. J. Heat and Mass Transfer 16, 961 (19731Google Scholar
  120. 5.116
    S.P. Bhattacharyya, S. Nadoor: Stability of thermal convection between non-uniformly heated plates. Appl. Sci. Res. 32, 1412 (1976)Google Scholar
  121. 5.117
    R.V. Birikh, G.Z. Gershuni, E.M. Zhukhovitskii, R.N. Rudakov: Stability of the steady convective motion of a fluid with a longitudinal temperature gradient. J. Appl. Math. Mech. (PPM) 33, 937 (1969)Google Scholar
  122. 5.118
    C.K. Crawford: High efficiency high-temperature radiation heat shields. J. Vac. Sci. Techn. 9, 23 (1972)Google Scholar
  123. 5.119
    F. Gambale, A. Gliozzi: Formation of dynamic patterns in a fluid layer. J. Phys. Chem. 76, 783 (1972)Google Scholar
  124. 5.120
    E.D. Burger, L.M. Blair, J.A. Quinn: Intermittent convection: confirmation of a model for mass transfer into stratified fluid layers. Chem. Eng. Sci. 29, 1545 (1974)Google Scholar
  125. 5.121
    D.T.J. Hurle, E. Jakeman: Significance of Soret effect in the Rayleigh-Jeffreys’ problem. Phys. Fluids 12, 2704 (1969)Google Scholar
  126. 5.122
    S.H. Smith, D. Elwell: Growth of nickel ferrite crystals from barium borate by a pulling method. J. Crystal Growth 3, 4 471 (1968)Google Scholar
  127. 5.
    B. Baranowski, A.L. Kawczynski: Hydrodynamic stability in liquid electrochemical systems with concentration polarization. Roczn. Chem. 44Google Scholar
  128. 5.124
    J.S. Turner: Double-diffusive phenomena. Ann. Rev. Fluid Mech. 6, 37 (1974)Google Scholar
  129. 5.125
    J.S. Turner: Laboratory experiments on double-diffusive instabilities. Adv. Chem. Phys. 32, 135 (1975)Google Scholar
  130. 5.126
    J.S. Turner: Buoyancy Effects in Fluids ( Cambridge University Press, Cambridge 1973 )Google Scholar
  131. 5.127
    P.G. Baines, A.E. Gill: On thermohaline convection with linear gradients. J. Fluid Mech. 37, 289 (1969)Google Scholar
  132. 5.128
    R.S. Schechter, M.G. Velarde, J.K. Platten: The two-component Bénard problem. Adv. Chem. Phys. 26, 265 (1974)Google Scholar
  133. 5.129
    W.R. Lindberg, R.D. Haberstroh: On simultaneous transport of heat and mass in natural convection. AIChE J. 18, 243 (1972)Google Scholar
  134. 5.130
    H.E. Huppert, D.R. Moore: Nonlinear double-diffusive convection. J. Fluid Mech. 78, 821 (1976)Google Scholar
  135. 5.131
    C.F. Chen: Double-diffusive convection in an inclined slot. J. Fluid Mech. 72, 721 (1975)Google Scholar
  136. 5.132
    C.F. Chen, R.D. Samford: Stability of time-dependent double diffusive convection in an inclined slot. J. Fluid Mech. 83, 83 (1977)Google Scholar
  137. 5.133
    T.G.L. Shirtcliffe: Thermosolutal convection: observation of an over-stable mode. Nature 213, 489 (1967)Google Scholar
  138. 5.134
    D.T.J. Hurle, E. Jakeman: Soret-driven thermosolutal convection. J. Fluid Mech. 47, 667 (1971)Google Scholar
  139. 5.135
    R.S. Schechter, M.G. VeLarde, J.K. Platten: The two-component Bénard problem. Adv. Chem. Phys. 26, 265 (1974)Google Scholar
  140. 5.136
    J.K. Platten, G. Chavepeyer: Nonlinear two-dimensional Bénard convection with Soret effect: free boundaries. Int. J. Heat Mass Transfer 20, 113 (1977)Google Scholar
  141. 5.137
    D.R. Caldwell: Experimental studies on the onset of thermohaline convection. J. Fluid Mech. 64, 347 (1974)Google Scholar
  142. 5.138
    D.R. Caldwell: Thermosolutal convection in a solution with large negative Soret coefficient. J. Fluid Mech. 74, 129 (1976)Google Scholar
  143. 5.139
    J. Bdzil, H.L. Frisch: Chemical instabilities. VI. Hydrodynamic instabilities of the dissociating fluid A2 f 2A. Phys. Fluids 14, 2048Google Scholar
  144. 5.140
    E. Fitzer: Dynamische Instabilitäten bei heterogenen Gas/FeststoffReaktionen. Chem. Ing. Techn. 41, 331 (1969)Google Scholar
  145. 5.141
    W. Fritz: Oscillations during hot wall pyrolysis. High Temp. High Press. 2, 291 (1970)Google Scholar
  146. 5.142
    R.N. Noyes, R.J. Field: Oscillatory chemical reactions. Ann. Rev. Phys. Chem. 25, 95 (1974)Google Scholar
  147. 5.143
    D.A. Nield: Surface tension and buoyancy effects in cellular convection. J. Fluid Mech. 19, 341 (1964)Google Scholar
  148. 5.144
    K.A. Smith: On convection instability induced by surface-tension gradients. J. Fluid Mech. 24, 401 (1966)Google Scholar
  149. 5.145
    L.E. Striven, C.V. Sternling: On cellular convection driven by surface-tension gradients: effect of mean surface tension and viscosity. J. Fluid Mech. 19, 321 (1964)Google Scholar
  150. 5.146
    T.C. Bannister, P.G. Grodzka, L.W. Spradley, S.V. Bourgeois, R.O. Hedden, B.R. Facemire: NASA Report No. TMX-64772 (1973)Google Scholar
  151. 5.147
    R.V. Birikh: Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Techn. Phys. 7, 43 (1966)Google Scholar
  152. 5.148
    S. Ostrach: Motion induced by capillarity. Proc. Int. Conf. Physicochemical Hydrodynamics (Levich Conference) 1977. ( Advance Publications, St. Peter Port/Guernsey, UK 1978 )Google Scholar
  153. 5.149
    A. Passerone: The Basic Principle of Wetting Processes“, in Science and Technology of Surface Coating, ed. by B.N. Chapman, J.C. Anderson ( Academic Press, London 1974 ) p. 194Google Scholar
  154. 5.
    Moving Boundary Problems,ed. by D.G. Wilson, A.D. Solomon, P.T. Boggs (Academic Press, New York 1978)Google Scholar
  155. 5.151
    G.Z. Gershuni, E.M. Zhukhovitskii: Convective stability of Incompressible Fluids ( Keter Publ., Jerusalem 1976 )Google Scholar
  156. 5.152
    C. Normand, Y. Pomeau, M.G. Velarde: Convective instability: A physicist’s approach. Rev. Mod. Phys. 49, 581 (1977)Google Scholar
  157. 5.153
    C.L. Strong: Experiments with salt fountains and related instabilities in water. Scientific-American 224 (6) 124 (1971)Google Scholar
  158. 5.154
    J. Walker: The salt fountain and other curiosities based on the different density of fluids. Scientific American 237 (4) 142 (1977)Google Scholar
  159. 5.155
    R.C. Jones, W.H. Furry: The separation of isotopes by thermal diffusion. Rev. Mod. Phys. 18, 151 (1946)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Franz E. Rosenberger
    • 1
  1. 1.Department of Physics and Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations