Electrochemical Phenomena Related to Electrodes Used for Stimulation of Bone Formation

  • J. Cordey
  • S. Steinemann
  • S. M. Perren


Concerning stimulation of bone formation by direct current (DC) (1,4,12) the following characteristics seem to be important:
  1. 1.

    Bone formation is in most cases localized at the cathode, not at the anode.

  2. 2.

    Bone formation is restricted to regions near the cathode and does not spread out when increasing currents are applied.

  3. 3.

    Maximum bone formation seems to occur at a specific level of current; at current levels 10 times smaller the effect disappears and at levels 10 times larger bone resorption occurs at the cathode and at the anode. The active level is given as 10 µA, resulting, e.g., in 50 µA/cm2 (13).



Bone Formation Direct Current Passivating Layer Stainless Steel Electrode Electrode Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassett, C.A.L., Pawluk, R.J., Becker, R.O.: Effect of electric currents on bone in vivo. Nature 204, 652–654 (1964)PubMedCrossRefGoogle Scholar
  2. 2.
    Brighton, C.T., Friedenberg, Z.B.: Electrical stimulation and oxygen tension. Conf. N.Y. Acad. Sci. 238, 314–319 (1974)CrossRefGoogle Scholar
  3. 3.
    Brighton, C.T., Adler, S., Black, J., Idata, N., Friedenberg, Z.B.: Cathodic oxygen consumption and electrically induced osteogenesis. Clin.Orthop. 107, 227–282 (1975)Google Scholar
  4. 4.
    Friedenberg, Z.B., Andrews, E.T., Smolenski, B.I., Pearl, B.W., Brighton, C.T.: Bone reaction to varying amounts of direct current. Surg.Gynecol.Obstet. 131, 894–899 (1970)PubMedGoogle Scholar
  5. 5.
    Gerber, H., Buerge, M., Cordey, J., Ziegler, W., Perren, S.M.: Quantitative determination of tissue tolerance of corrosion products by organe culture. In: Proceedings European Society for Artificial Organs, Buecheri, E.S. (ed.). 1974, Vol. I, pp. 29–34 Berlin ESAOGoogle Scholar
  6. 6.
    ISO TC 150/1/2 N 691 draft Kopenhagen, 1975Google Scholar
  7. 7.
    Liboff, A.R., Rinaldi, R.A., Lavine, L.S., Shamos, M.H.: On electrical conduction in living bone. Clin.Orthop. 106, 330–335 (1975)PubMedCrossRefGoogle Scholar
  8. 8.
    Pilla, A.: Electrochemical information transfer at living cell membranes. Conf. N.Y. Acad. Sci. 238, 149–169 (1974)CrossRefGoogle Scholar
  9. 9.
    Steinemann, S.: Resistance à la corrosion par piqûre de l’acier inoxydable au chrome-nickel-molybdène élaboré normalement à haute fréquence et refondu sous laitier électroconducteur (ESR). Rev. Métallurgie 651–658 (1968)Google Scholar
  10. 10.
    Steinemann, S.: Korrosion Verträglichkeit und metallische Eigenschaften von metallischen Allenthesen. Fortschr. Kiefer Gesichtschir. 19, 50–56 (1975)PubMedGoogle Scholar
  11. 11.
    Vegonupal, B., Luckey, T.D.: Toxicology of non-radioactive heavy metals and their salts. In: Heavy Metal Toxicity Safety and Homology. Luckey, T.D., Vegonupal, B., Hutcheson, D. (eds.): Stuttgart: Georg Thieme 1975Google Scholar
  12. 12.
    Yasuda, I., Noguchi, K., Sata, T.: Dynamic callus and electric callus. J. Bone Joint Surg. 37A, 1292–1293 (1955)Google Scholar
  13. 13.
    Zengo, A.N., Bassett, C.A.L., Prountzos, G., Pawluk, R.J., Pilla, A.: In vivo effects of direct current in the mandible. J. Dent.Res. 55, 383–390 (1976)PubMedCrossRefGoogle Scholar
  14. 14.
    Zitter, H.: Schädigung des Gewebes durch metallische Implantate. Hefte Unfallheilk. 79, 91–100 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • J. Cordey
  • S. Steinemann
  • S. M. Perren

There are no affiliations available

Personalised recommendations