Advertisement

Electric Stimulation of Bone Growth and Repair: A Review of Different Stimulation Methods

  • Ewa Herbst

Abstract

In 1957 Fukada and Yasuda (28) showed that bone has piezoelectric properties, i.e., that it generates electric potentials in response to mechanical stress. The same phenomenon was described in 1962 by Bassett and Becker (3), who also observed that the potentials developed are negative in the area of compression and positive in the area of tension. They tried to explain the stress-generated potentials in terms of solid-state properties of bone tissue (16). Shamos and Lavine objected to the solid-state concept and spoke in favor of the piezoelectric explanation (50). In 1968 Cochran et al. described experiments on wet bone as well as in vivo experiments on cats (20). No significant difference could be seen between the potential patterns of dead and living bone in response to mechanical stress. In 1971 Marino and Becker repeated the experiment of Fukada and Yasuda and found collagen to be the source of piezoelectric potential generation (46). Another possible explanation of the origin of stress-generated potentials, or at least a partial one, may be ‘streaming potentials’, well described by Eriksson (22).

Keywords

Alternate Current Osteosynthesis Plate Stimulation Method Bone Healing Process Fibular Osteotomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassett, C.A.L.: Electromechanical factors regulating bone architecture. In: Third European Symposium on Calcified Tissues. Fleisch, H.,Blackwood, H.J.J., Owen, M. (eds.). Berlin: Springer-Verlag 1966, pp. 78–89Google Scholar
  2. 2.
    Bassett, C.A.L.: Biophysical principles affecting bone structure. In: The Biochemistry and Physiology of Bone. Bourne, G.H. (ed.). New York: Academic Press 1971, Vol. I IIGoogle Scholar
  3. 3.
    Bassett, C.A.L., Becker, R.O.: Generation of electric potentials by bone in response to mechanical stress. Science 137, 1063–1064 (1962)PubMedCrossRefGoogle Scholar
  4. 4.
    Bassett, C.A.L., Hermann, I.: The effect of electrostatic fields on macro-molecular synthesis by fibroblasts in vitro. J. Cell Biol. 39, 9a (1968)Google Scholar
  5. 5.
    Bassett, C.A.L., Pawluk, R.J.: Non-invasive methods for stimulating osteogenesis. J. Biomed. Mater. Res. 9, 371–374 (1975)PubMedCrossRefGoogle Scholar
  6. 6.
    Bassett, C.A.L., Pawluk, R.J., Becker, R.O.: Effects of electric currents on bone in vivo. Nature 204, 652–654 (1964)PubMedCrossRefGoogle Scholar
  7. 7.
    Bassett, C.A.L., Pawluk, R.J., Pilla, A.A.: Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184, 575–577 (1974)PubMedCrossRefGoogle Scholar
  8. 8.
    Bassett, C.A.L., Pawluk, R.J., Pilla, A.A.: Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann. N.Y. Acad. Sci. 238 242–262 (1974)Google Scholar
  9. 9.
    Bauer, U., Kinzl, L., Wolter, D.: Untersuchungen zur Knochenbruchheilung unter Einfluß von elektrischem Gleichstrom. Z. Orthop. 112 402–407 (1974)Google Scholar
  10. 10.
    Becker, R.O.: Augmentation of regenerative healing in man. Clin. Orthop. 83, 255–262 (1972)PubMedCrossRefGoogle Scholar
  11. 11.
    Becker, R.O.: Stimulation of partial limb regeneration in rats. Nature 235, 109–111 (1972)PubMedCrossRefGoogle Scholar
  12. 12.
    Becker, R.O., Murray, D.G.: A method for producing cellular dedifferentation by means of very small electrical currents. Trans. N.Y. Acad. Sci. 29, 606–614 (1967)PubMedGoogle Scholar
  13. 13.
    Becker, R.O., Murray, D.G.: The electrical control system regulating fracture healing in amphibians. Clin. Orthop. 73, 169–198 (1970)PubMedGoogle Scholar
  14. 14.
    Becker, R.O., Spadaro, J.A.: Electrical stimulation of partial limb regeneration in mammals. Bull. N.Y. Acad. Med. 48, 627–641 (1972)PubMedGoogle Scholar
  15. 15.
    Becker, R.O., Bachman, C.H., Slaughter,W.H.: Longitudinal direct-current gradients of spinal nerves. Nature 196, 675–676 (1962)PubMedCrossRefGoogle Scholar
  16. 16.
    Becker, R.O., Bassett, C.A.L., Bachman, C.H.: Bioelectrical factors controlling bone structure. In: Bone Biodynamics. Frost, H. (ed.). Boston: Little, Brown and Company 1964Google Scholar
  17. 17.
    Brighton, C.T., Friedenberg, Z.B., Zemsky, L.M., Pollis, P.R.: Direct-current stimulation of non-union and congenital pseudarthrosis. J. Bone Joint Surg. 57 A 368–377 (1975)Google Scholar
  18. 18.
    Cieszynski, T.: Studies on the regeneration of ossal tissue. U. Treatment of bone fractures in experimental animals with electric energy. Arch. Immunol. Ther. Exper. (Warsz.) 11, 199–217 (1963)Google Scholar
  19. 19.
    Cochran, G.V.B.: Experimental methods for stimulation of bone healing by means of electrical energy. Bull. N.Y. Acad. Med. 48, 900–911 (1972)Google Scholar
  20. 20.
    Cochran, G.V.B., Pawluk, R.J., Bassett, C.A.L.: Electromechanical characteristics of bone under physiologic moisture conditions. Clin. Orthop. 58, 249–270 (1968). PubMedGoogle Scholar
  21. 21.
    Dwyer, A.F., Wickham, G.G.: Direct current stimulation in spinal fusion. Med. J. Aust. 1, 73–74 (1974)PubMedGoogle Scholar
  22. 22.
    Eriksson, C.: Streaming potentials and other water-dependent effects in mineralized tissues. Ann. N.Y.Acad. Sci, 238, 321–336 (1974)PubMedCrossRefGoogle Scholar
  23. 23.
    Friedenberg, Z.B., Kohanim, M.: The effect of direct current on bone. Surg. Gynec. Obstet. 127, 97–102 (1968)PubMedGoogle Scholar
  24. 24.
    Friedenberg, Z.B., Andrews, E.T., Smolenski, B.I., Pearl, W.P., Brighton, C.T.: Bone reaction to varying amounts of direct current. Surg. Gynecol. Obstet. 131, 894–899 (1970)PubMedGoogle Scholar
  25. 25.
    Friedenberg, Z.B., Harlow, M.C., Brighton, C.T.: Healing of nonunion of the medial malleolus by means of direct current: a case report. J. Trauma 11, 883–885 (1971)PubMedCrossRefGoogle Scholar
  26. 26.
    Friedenberg, Z.B., Roberts, P.G., Didizian, N.H., Brighton, C.T.: Stimulation of fracture healing by direct current in the rabbit fibula. J. Bone Joint Surg. 53 A, 1400–1408 (1971)Google Scholar
  27. 27.
    Friedenberg, Z.B., Zemsky, L.M., Pollis, R.P., Brighton, C.T.: The response of non-traumatized bone to direct current. J. Bone Joint Surg. 56 A, 1023–1030 (1974)Google Scholar
  28. 28.
    Fukada, E., Yasuda, I.: On the piezoelectric effect on bone. J. Physiol. Soc.Jpn. 12, 1158–1169 (1957)CrossRefGoogle Scholar
  29. 29.
    Hambury, H.J., Watson, J., Sivyer, A., Ashley, D.J.B.: Effect of microamp electrical currents on bone in vivo and its measurement using Strontium-85 uptake. Nature 231, 190–191 (1971)PubMedCrossRefGoogle Scholar
  30. 30.
    Herbst, E., Josefsson, M., Björkman, J.A., Nordström, H., Satzger, G.: Electrical stimualtion of fracture healing. Part II: Experimental Study. Technical report 13:74, Res. Lab. Med. Electr., Göteborg, 1974Google Scholar
  31. 31.
    Iida, H., Ko, S., Miyashita, Y., Sauada, S., Maeda, M., Nagayama, H., Kawai, A., Kitamura, S.: On electric callus produced by an alternating current. J. Kyoto Prefect. Coll. Med. 60, 561–564 (1956)Google Scholar
  32. 32.
    Ilfeld, F.W., Weinberg, Ch., Rosen, V., August, W.: Direct current induced mosaic bone architecture. Clin. Orthop. 99 (1974)Google Scholar
  33. 33.
    Jörgensen, T.E.: The effect of electric current on the healing time of crural fractures. Acta Orthop. Scand. 43, 421–437 (1972)Google Scholar
  34. 34.
    Kenner, G.H., Gabrielson, E.W., Lovell, J.E., Marshall, A.E.: Electrical modifications of disuse osteoporosis. Calccif. Tissue Res. 18, 111–117 (1975)CrossRefGoogle Scholar
  35. 35.
    Klems, H., Venohr, H., Weigert, M.: Stimulierung des Längenwachstums von Röhrenknochen durch elektrischen Gleichstrom. Szintigraphische Untersuchungen an der Kaninchentibia. Arch. Orthop. Unfallchir. 81, 285–289 (1975)PubMedGoogle Scholar
  36. 36.
    Kraus, W.: Apparatus and method for aiding formation of bone forming material. Patent Specification 1 311 519 London: The Patent Office 1973Google Scholar
  37. 37.
    Kraus, W., Lechner, F.: Die Heilung von Pseudarthrosen und Spontanfrakturen durch strukturbildende elektrodynamische Potentiale. Munch. Med. Wochenschr. 114, 1814–1819 (1972)PubMedGoogle Scholar
  38. 38.
    Lavine, L.S., Lustrin, I., Shamos, M.H., Moss, M.L.: The influence of electric current on bone regeneration in vivo. Acta Orthop. Scand. 42, 305–314 (1971)Google Scholar
  39. 39.
    Lavine, L., Lustrin, I., Rinaldi, R., Shamos, M.: Clinical and ultrastruc turai investigations of electrical enhancement of bone healing. Ann. N.Y. Acad. Sci. 238 552–563 (1974)Google Scholar
  40. 40.
    Lechner, F.: Die Beeinflussung gestörter Frakturheilung durch elektromagnetische Felder. In: Hefte zur Unfallheilkunde, Heft 114, DeutschÖsterreichisch-Schweizerische Unfalltagung, Bern, 1972Google Scholar
  41. 41.
    Lechner, F.: Beeinflussung der Knochenbildung durch elektromagnetische Potentiale. Langenbecks Arch. Chir. 337, 1974Google Scholar
  42. 42.
    Levy, D.D.: Induced osteogenesis by electrical stimulation. Ph.D. thesis ( Bioengineering ), The Polytechnic Institute of Brooklyn, 1971, p. 35Google Scholar
  43. 43.
    Levy, D.D.: A pulsed electrical stimulation technique for inducing bone growth. Ann. N.Y. Acad. Sci. 238, 478–489 (1974)PubMedCrossRefGoogle Scholar
  44. 44.
    Levy, D.D., Rubin, B.: Inducing bone growth in vivo by pulse stimulation. Clin. Orthop. 88, 218–222 (1972)PubMedCrossRefGoogle Scholar
  45. 45.
    Liboff, A.R., Rinaldi, R.A. (eds.): Electrically mediated growth mechanisms in living systems. Ann. N.Y. Acad. Sci. 238 (1974)Google Scholar
  46. 46.
    Marino,A.A., Becker,R.O.: Origin of the piezoelectric effect in bone. Calcif. Tissue Res. 8, 177–180 (1971)PubMedCrossRefGoogle Scholar
  47. 47.
    Minkin, C., Poulton, B.R., Hoover, W.H.: The effect of direct current on bone. Clin. Orthop. 57, 303–309 (1968)PubMedGoogle Scholar
  48. 48.
    Richez,J., Chamay,A., Bidler,L.: Bone changes due to pulses of direct electric microcurrent. Virchows Arch. [Pathol. Anat.] 357, 11–18 (1972)Google Scholar
  49. 49.
    Satzger, G., Herbst, E.: 1976, this publicationGoogle Scholar
  50. 50.
    Shamos, M.H., Lavine, L.S.: Physical bases for bioelectric effects in mineralized tissues. Clin. Orthop. 35, 177–188 (1964)PubMedGoogle Scholar
  51. 51.
    Weigert, M., Werhahn, C., Mülling, M.: Beschleunigung der knöchernen Heilung von Osteotomien an Schafen durch elektrischen Strom. Z. Orthop. 110, 959–962 (1972)PubMedGoogle Scholar
  52. 52.
    Werhahn, C., Weigert, M.: Die Stimulierung der primären Knochenheilung durch elektrischen Gleichstrom. Z. Orthop. 112, 1226–1242 (1974)PubMedGoogle Scholar
  53. 53.
    Wittebol, P.: Stimulation of non-epiphyseal bone growth. Calcif. Tissue Res. 4, (Suppl.), 122 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Ewa Herbst

There are no affiliations available

Personalised recommendations