Grundlagen der Strahlenmeßtechnik

  • K. Jordan
Part of the Handbuch der medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 15 / 1 / A)

Zusammenfassung

Die Grundlagen der Strahlenmeßtechnik in dem hier vorgegebenen Rahmen zu besprechen, erfordert eine erhebliche Beschränkung auf bestimmte Teilgebiete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ageno, M., Chiozzotto, M., Querzoli, R.: Sulla nuova tecnica dei contatori a scintillatione. Rendiconti Acc. Lincei VI, 626–631 (1949)Google Scholar
  2. Allkofer, O.: Teilchen-Detektoren, Band 41. München: Thiemig 1971Google Scholar
  3. Anger, H.O., Davis, D.H.: Gamma-Ray Detection Efficiency and Image Resolution in Sodium Iodide. Rev. Sci. Instr. 35, 693–697 (1964)Google Scholar
  4. Armantrout, G.A.: High Operating Temperature Limitations for Germanium Detectors. IEEE Trans, nucl. Sci. NS-19, No. 3, 289–298 (1972)Google Scholar
  5. Baker, J.C., Eichholz, G.G.: Reliable Scaling Circuits for Decade Tubes. Nucleonics 12, No. 4, 44–49 (1954)Google Scholar
  6. Baldwin, A.R., Madey, R.: A Temperature-Stable Linear Gate for Nanosecond Signals and an Optional Stretcher Circuit. Nucl. Instr. Meth. 128, 557–559 (1975)Google Scholar
  7. Ball, W.P., Booth, R., MacGregor, M.: Tempera-ture Coefficients of Scintillating Systems. Nucl. Instr. 1, 71–74 (1957)Google Scholar
  8. Bell, C.G. Jr., Hayes, F.N.: Liquid Scintillation Counting. Oxford: Pergamon Press 1958Google Scholar
  9. Berger, M.J., Seltzer, S.M.: Tables of Energy Losses and Ranges of Electrons and Positrons. Report NASA SP-3012, Washington 1964Google Scholar
  10. Berkson, J.: Do Radioactive Decay Events Follow a Random Poisson-Exponential? J. appl. Rad. Isotop. 26, 543–549 (1975)Google Scholar
  11. Bhatt, S.J., Taylor, D.: Processing of Pulse Trains Using Rate Multipliers in Nuclear Instrumentation. Nucl. Instr. Meth. 89, 301–304 (1970)Google Scholar
  12. Birks, J.B.: The Theory and Practice of Scintillation Counting. Oxford: Pergamon Press 1964Google Scholar
  13. Birks, J.B.: Photophysics of Aromatic Molecules. New York: Wiley (Interscience) 1970Google Scholar
  14. Bisi, A., Zappa, L.: Statistical Spread in Pulse Size of the Scintillation Spectrometer. Nucl. Instr. 3, 17–24 (1958)Google Scholar
  15. Blasweiler, W.: Elektrische Zählwerke, Teil I und II. Arch. Techn. Mess. 378, 155–160 (1967)Google Scholar
  16. Blasweiler, W.: **Arch. Techn. Mess. 379, 179–182 (1967)Google Scholar
  17. Boutot, J.P., Piétri, G.: Ultrahigh-Speed MicroChannel Photomultiplier. IEEE Trans. Electr. Dev. ED-17, Nr. 7, 493–495 (1970)Google Scholar
  18. Bransome, E.D. Jr.: Liquid Scintillation Counting in Nuclear Medicine. Sem. nucl. Med. 3, No. 4, 389–399 (1973)Google Scholar
  19. Breitenberger, E.: Scintillation Spectrometer Statistics. Progr. Nucl. Phys. 4, 56–94 (1955)Google Scholar
  20. Brill, A.B., Patton, J.A., Baglan, R.J.: An Experimental Comparison of Scintillation and Semiconductor Detectors for Isotope Imaging and Counting. IEEE Trans, nucl. Sci. NS-19, No. 3, 179–189 (1972)Google Scholar
  21. Brooks, F.D.: A Scintillation Counter with Neutron and Gamma-Ray Discriminators. Nucl. Instr. Meth. 4, 151–163 (1959)Google Scholar
  22. Büker, H.: Theorie und Praxis der Halbleiterdetektoren für Kernstrahlung. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  23. Byrd, J.S.: A Digital Ratemeter for Computer Applications. Nucl. Instr. Meth. 121, 397–403 (1974)Google Scholar
  24. Cantarell, I., Almodovar, I.: Prediction, Acceleration and Correction of Fatigue Effects in Photo- multiplier Tubes. Int. J. appl. Radiat. 16, 91–95 (1965)Google Scholar
  25. Cathey, L.: Fatigue in Photomultipliers. IRE Trans. nucl. Sci. NS-5, 109–114 (1958)Google Scholar
  26. Charpak, G.: Automatik Spark Chambers. Ann. Rev. nucl. Sci. 20, 195–254 (1970)Google Scholar
  27. Charpak, G., Majewski, S., Sauli, F.: The Scintillating Drift Chamber: A New Tool for High-Accuracy, Very-High-Rate Particle Localization. Nucl. Instr. Meth. 126, 381–389 (1975)Google Scholar
  28. Chase, R.: A two-dimensional Kicksorter with Magnetic Drum Storage. IRE Nat. Conv. Ree. Part 9, 196 (1959)Google Scholar
  29. Chase, R.L.: Nuclear Pulse Spectrometry. New York: Mc Graw-Hill 1961Google Scholar
  30. Chevalier, Ph., Boutot, J.P., Pietri, G.: A PM of New Design for High Speed Physics. IEEE Trans nucl. Sci. NS-17, No. 3, 75–78 (1970)Google Scholar
  31. Cho, Z.H., Tsai, C.M., Eriksson, L.A.: Tin and Lead Loaded Plastic Scintillators for Low Energy Gamma-Ray Detection with Particular Applikation to High Rate Detection. IEEE Trans, nucl. Sci. NS-22, No. 1, 72–80 (1975)Google Scholar
  32. Ciampi, M., Daddi, L., D’Angelo, V.: Fitting of Gaussians to Peaks by a Maximum Probability Method. Nucl. Instr. Meth. 66, 102–104 (1968)Google Scholar
  33. Cohn, C.E.: The Effect of Deadtime on Counting Errors. Nucl. Instr. Meth. 41, 338–340 (1966)Google Scholar
  34. Coltman, J.W., Marshall, F.H.: Photomultiplier Radiation Detector. Nucleonics 1, No. 3, 58–64 (1947)Google Scholar
  35. Crouthamel, C.E.: Applied Gamma-Ray Spectrometry, 2nd ed. Oxford: Pergamon Press 1970Google Scholar
  36. Daddi, L., D’Angelo, V.: Evaluation of Peaks in Nuclear Spectroscopy. Nucl. Instr. Meth. 42, 134–136 (1966)Google Scholar
  37. Davisson, C.M., Evans, R.D.: Gamma-Ray Absorption Coefficients. Rev. Mod. Phys. 24, 79–107 (1952)Google Scholar
  38. De Bruin, M., Then, S.S., Bode, P., Korthoven, P.J.M.: A Simple Dead-Time Stabilizer for Gamma-Ray Spectrometers. Nucl. Instr. Meth. 121, 611–613 (1974)Google Scholar
  39. Deutsche Norm: Begriffe und Benennungen in der radiologischen Technik, Strahlenphysik. DIN 6814, Blatt 2. Berlin: Beuth-Vertrieb 1970Google Scholar
  40. Deutsche Norm: Grundbegriffe der Meßtechnik. Begriffe für die Fehler beim Messen. DIN 1319, Blatt 3. Berlin: Beuth-Vertrieb 1972Google Scholar
  41. Dinger, R.J.: Dead Layers at the Surface of p-i-n Detectors-A Review. IEEE Trans, nucl. Sci. NS-22, No. 1, 135–139 (1975)Google Scholar
  42. Draper, J.E., Hickok, R.L.: Dependence of Scintillation Counter Resolution on Shape of Light Pulse and Anode Time Constant. Rev. Sci. Instr. 29, 1047–1048 (1958)Google Scholar
  43. Drummond, W.E.: High Purity Germanium Radiation Detectors. IEEE Trans, nucl. Sci. NS-18, No. 2, 91–100 (1971)Google Scholar
  44. Duckett, S.W.: Miniature Photomultiplier for Scintillation and Space Use. IEEE Trans, nucl. Sci. NS-19, No. 3, 71–73 (1972)Google Scholar
  45. Eberhardt, J.E., Ryan, R.D., Tavendale, A.J.: Evaluation of Epitaxial n-GaAs for Nuclear Radiation Detection. Nucl. Instr. Meth. 94, 463–476 (1971)Google Scholar
  46. Elad, E., Inskeep, C.N., Sareen, R.A., Nestor, P.: Dead Layers in Charged-Particle Detectors. IEEE Trans, nucl. Sci. NS-20, No. 1, 534–544 (1973)Google Scholar
  47. Elmore, W.C.: Statistics of Counting. Nucleonics 6, No. 1, 26–34 (1950)PubMedGoogle Scholar
  48. Elmore, W.C., Sands, M.: Electronics. New York: McGraw-Hill 1949Google Scholar
  49. Engelkemeir, D.: Nonliner Response of NaJ (Tl) to Photons. Rev. Sci. Instr. 27, 589–591 (1956)Google Scholar
  50. England, J.M., Miller, R.G.: Counting Times in the Measurement of Radioactivity. Int. J. appl. Radiat. 20, 1–10 (1969)PubMedGoogle Scholar
  51. Eriksson, L.A., Tsai, C.M., Cho, Z.H., Hurlbut, C.R.: Comparative Studies on Plastic Scintillators- Applications to Low Energy High Rate Photon Detection. Nucl. Instr. Meth. 122, 373–376 (1974)Google Scholar
  52. Evans, R.: The Atomic Nucleus. New York-Toronto- London: McGraw-Hill 1955Google Scholar
  53. Fairstein, E.: Electrometers and Amplifiers. In: Nuclear Instruments and their Uses (A.H. Snell, Ed.). New York: John Wiley & Sons 1962Google Scholar
  54. Fairstein, E.: Gated Baseline Restorer with Adjustable Asymmetry. IEEE Trans, nucl. Sci. NS-22, No. 1, 463–466 (1975)Google Scholar
  55. Fano, U.: Gamma-Ray Attenuation, Part I Basic Processes. Nucleonics 11, No. 8, 8–12 (1953)Google Scholar
  56. Franz, K., Müller, KL.: Dependence of Line Widths of Scintillation Counters with NaJ (Tl)-Crystals on Integration Time Constant. Nucl. Instr. Meth. 22, 43–44 (1963)Google Scholar
  57. Frank, S.G.F., Frisch, O.R., Scarrott, G.G.: A Mechanical Kick-sorter (Pulse Size Analyser). Phil. Mag. 42, 603–611 (1951)Google Scholar
  58. Fräser, H.J.: An Accurate Logarithmic Ratemeter For Random Pulses. IEEE Trans, nucl. Sci. NS-21, 31–38 (1974)Google Scholar
  59. Friedland, S.S., Benary, V., Ewins, J.H., Katzenstein, H.S.: Invivo Silicon Detectors, Invivo Preamplifiers and their Applications. IEEE Trans, nucl. Sci. NS-19, No. 3, 244–251 (1972)Google Scholar
  60. Friedland, S.S., Katzenstein, H.S.: Design Considerations and Applications of In-Vivo Silicon Detectors and In-Vivo Amplifiers. Semiconductor Detec tors in Medicine, Conf-730321, U.S. Atomic Energy Commission 1973Google Scholar
  61. Fröhner, F.H.: Zur Theorie des Zählratenmessers. Nukleonik 5, Nr. 2, 82–85 (1963)Google Scholar
  62. Fünfer, E., Neuert, H.: Zählrohre und Szintillations- zähler, 2. Aufl. Karlsruhe: G. Braun 1959Google Scholar
  63. Fujita, Y., Taguchi, Y., Imamura, M., Inoue, T., Tanaka, S.: A Low-Level Needle Counter. Nucl. Instr. Meth. 128, 523–524 (1975)Google Scholar
  64. Garcia, D.A., Entine, G., Tow, D.E.: Detection of Small Bone Abscesses with a High-Resolution Cadmium Telluride Probe. J. nucl. Med. 15, 392–895 (1974)Google Scholar
  65. Gatti, E., Svelto, V.: Theory of Time Resolution in Scintillation Counters. Nucl. Instr. Meth. 4, 189–201 (1959)Google Scholar
  66. Gatti, E., Svelto, V.: Revised Theory of Time Resolution in Scintillation Counters. Nucl. Instr. Meth. 30, 213–223 (1964)Google Scholar
  67. Gebauer, H., Suttor, F.: Ein Meßgerät zur kontinuierlichen Bestimmung der 14C-Aktivität und C02-Konzentration mit großflächigen Methan- durchflußzählrohren. Atompraxis 12, 454–457 (1966)Google Scholar
  68. Gleason, G.I., Taylor, J.D., Tabern, D.L.: Absolute Beta Counting at Defined Geometries. Nucleonics 8, No. 5, 12–21 (1951)PubMedGoogle Scholar
  69. Graf, U., Henning, H., Stange, K.: Formeln und Tabellen der mathematischen Statistik, 2. Aufl. Berlin: Springer 1966Google Scholar
  70. Hanle, W.: Der Szintillationszähler. Naturwissenschaften 38, 176–185 (1951)Google Scholar
  71. Hanle, W., Schneider, H.: Neuere Entwicklung des Szintillationszählers. Z. angew. Phys. 10, 228–248 (1958)Google Scholar
  72. Heath, R.L., Helmer, R.G., Schmittroth, L.A., Ca- zier, G.A.: A Method for Generating Single Gamma-Ray Shapes for the Analysis of Spectra. Nucl. Instr. Meth. 47, 281–304 (1967)Google Scholar
  73. Heitler, W.: The Quantum Theory of Radiation, 2nd ed. London: Oxford University Press 1944Google Scholar
  74. Heitler, W.: The Quantum Theory of Radiation, 3rd ed. London: Oxford University Press 1954Google Scholar
  75. Henck, R., Siffert, P., Coche, A.: Characteristics of a 85 cm3 Ge(Li) y-Ray Detector. Nucl. Instr. Meth. 60, 343–345 (1968)Google Scholar
  76. Hiebert, R.D., Watts, R.J.: Fast-Coincidence Circuit for H3 and C14 Measurements. Nucleonics 11, No. 12, 38–41 (1953)Google Scholar
  77. Hine, G.J., McCall, R.C.: Gamma-Ray Backscatter- ing. Nucleonics 12, 27–30 (1954)Google Scholar
  78. Hirayama, H., Lim, I.C.: Parallel Tunnel Diode Coincidence Circuit. IEEE Trans, nucl. Sci. NS-17, No. 2, 7–17 (1970)Google Scholar
  79. Hofstadter, R.: Alkali Halide Scintillation Counters. Phys. Rev. 74, 100–101 (1948)Google Scholar
  80. Hofstadter, R.: Twenty Five Years of Scintillation Counting. IEEE Trans, nucl. Sci. NS-22, No. 1, 13–25 (1975)Google Scholar
  81. Hofstadter, R., O’Dell, E.W., Schmidt, C.T.: Cal2 and Cal2 (Eu) Scintillation Crystals. Rev. Sci. Instr. 35, 246–247 (1964). IEEE Trans, nucl. Sci. NS-11, 12–14 (1964)Google Scholar
  82. Horrocks, D.L.: Applications of Liquid Scintillation Counting. New York-London: Academic Press 1974Google Scholar
  83. Hubbell, J.H.: Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10keV to 100 GeV. Nat. Stand. Ref. Dada Ser.-Nat. Büro Stand. 29, Washington (1969)Google Scholar
  84. IAEA: Nuclear Electronics, Vol. I, II and III. Wien: International Atomic Energy Agency 1962Google Scholar
  85. Iams, H., Salzberg, B.: The Secondary-Emission Phototube. Proc. IRE 23, 55–64 (1935)Google Scholar
  86. IEC: Standard dimensions of scintillators, Publication 412, Geneva: Bureau Central de la Commission Electrotechnique Internationale 1973Google Scholar
  87. IEC: Standard test procedures for photomultiplier tubes for scintillation counting, Publication 462, Geneva: Bureau Central de la Commission Electro- technique Internationale 1974Google Scholar
  88. Iredale, P.: The Non-Proportional Response of NaJ (Tl) Crystals to y-Rays. Nucl. Instr. Meth. 11, 336–339 (1961)Google Scholar
  89. Jaffey, A.H.: Statistical Tests for Counting. Nucleonics 18, No. 11, 180–184 (1960)Google Scholar
  90. Jeavons, A.P., Charpak, G., Stubbs, R.J.: High-Density Drift Spaces. IEEE Trans, nucl. Sci. NS-22, No. 1, 297–300 (1975)Google Scholar
  91. Jordan, K.: Messung von Flüssigkeiten geringer spezifischer Aktivität mit dem Szintillationszähler. Atomwirtsch. 12, 496–501 (1958)Google Scholar
  92. Jordan, K., Brock, M., Knoop, B.,Weber, R., Nentwig, C., Herbst, I., Dietz, H.: Neue MiniaturSzintillationszähler zur ‘örtlichen Durchblutungsmessung in kleinen Gewebsvolumina. In: Radioaktive Isotope in Klinik und Forschung, Bd. 11. München: Urban & Schwarzenberg 1974Google Scholar
  93. Jordan, K., Hallermann, D., Knoop, B.: Neuartige Meßsonde zur Durchführung des 32P-Aufnahmete- stes in der Augendiagnostik. In: Nuklearmedizin (Hrsg. Pabst, Hör, Schmidt). Stuttgart-New York: F.K. Schattauer 1975Google Scholar
  94. Jordan, K., Winkler, C.: Elektrotechnische und elektromagnetische Verfahren zur Aufnahme und Auswertung von Szintillogrammen. In: Radioaktive Isotope in Klinik und Forschung, Bd. V. München: Urban & Schwarzenberg 1963Google Scholar
  95. Julke, R.T., Monahan, J.E., Raboy, S., Trail, C.C.: The Measurement of Energy and Intensity of Gamma Rays by Use of a Scintillation Spectrometer. Argonne National Lab. Report ANL-6499 (1962)Google Scholar
  96. Jung, H., Panussi, Ph., Jänecke, J.: Reversible Verstärkungsänderungen von Photomultipliern bei unterschiedlichen Zählraten. Nucl. Instr. Meth. 9, 121–130 (1960)Google Scholar
  97. Kaiser, W.C., Scintillation Spectrometry. The State of the Art. Analyt. Chem. 38, No. 11, 27 A-40 A (1966)Google Scholar
  98. Kalibjian, R.: A Phototube using a Semiconductor Diode as the Multiplier Element. IEEE Trans, nucl. Sci. NS-13, Nr. 3, 54–62 (1966)Google Scholar
  99. Kallmann, H.: Scintillation Counting with Solutions. Phys. Rev. 78, 621–622 (1950)Google Scholar
  100. Karlovac, N., Blalock, T.V.: An Investigation of the Count Rate Performance of Baseline Restorers. IEEE Trans, nucl. Sci. NS-22, No. 1, 457–462 (1975)Google Scholar
  101. Karlsson, L.: A Fast Linear Gate. Nucl. Instr. Meth. 94, 525–531 (1971)Google Scholar
  102. Katz, L., Penfold, A.S.: Range-Energy Relations for Electrons and the Determination of Beta-Ray End- Point Energies by Absorption. Rev. Mod. Phys. 24, 28–44 (1952)Google Scholar
  103. Kaufman, L., Perez-Mendez, V., Stoker, G.: Performance of a Pressurized Xenon-Filled Multiwire Proportional Chamber. IEEE Trans, nucl. Sci. NS-20, 426–428 (1973)Google Scholar
  104. Kaufman, R.G., Hadley, W.B., Hersh, H.N.: The Scintillation Mechanism in Thallium Doped Alkali Halides. IEEE Trans, nucl. Sci. NS-17, No. 3, 82–88 (1970)Google Scholar
  105. Kelley, G.G., Bell, P.R., Davis, R.C., Lazar, N.H.: Intrinsic Scintillator Resolution. Nucleonics 14, 53 (1956)Google Scholar
  106. Kiefer, H.: Das Großflächenproportionalzählrohr. KFK 411. Karlsruhe: Gesellschaft für Kernforschung mbH 1966Google Scholar
  107. Kirejew, P.S.: Physik der Halbleiter. Berlin: Akademie-Verlag 1974Google Scholar
  108. Klein, O., Nishina, Y.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z. Phys. 52, 853–868 (1929)Google Scholar
  109. Kluge, W., Beyer, O., Steyskal, H.: Über Photozellen mit Sekundäremissionsverstärkung. Z. techn. Phys. 18, 219–228 (1937)Google Scholar
  110. Knop, G., Paul, W.: Interaction of Electrons. In: Alpha-, Beta- und Gamma-Ray Spectroscopy (K. Siegbahn, Ed.), Vol. 1. Amsterdam: North-Holland Publishing Co. 1965Google Scholar
  111. Kobayashi, Y., Maudsley, D.V.: Biological Applications of Liquid Scintillation Counting. New York: Academic Press 1974Google Scholar
  112. Kostic, V.N., Kovac, B.J.: New Simple Logarithmic Counting-Rate Meter. Nuclear Electronics. IAEA 2, 445–450 (1962)Google Scholar
  113. Kowalski, E.: Nuclear Electronics. New York-Hei- delberg-Berlin: Springer 1970Google Scholar
  114. Kuhn, A.: Halbleiter- und Kristallzähler. Leipzig: Akademische Verlagsgesellschaft Geest & Portig 1969Google Scholar
  115. Llacer, J., Cho, Z.H.: Preliminary Study of a Germanium Three-dimensional Camera for Positron Emitting Radioisotopes. IEEE Trans, nucl. Sci. NS-20, No. 1, 282–293 (1973)Google Scholar
  116. Loevinger, R., Berman, M.: Efficiency Criteria in Radioactivity Counting. Nucleonics 9, No. 1, 26–39 (1951)PubMedGoogle Scholar
  117. Lynch, F J.: Basic Limitation of Scintillation Counters in Time Measurements. IEEE Trans, nucl. Sci. NS-22, No. 1, 58–64 (1975)Google Scholar
  118. Madan, V.K.: An Automatic Dead Time Corrector. Nucl. Instr. Meth. 131, 181–185 (1975)Google Scholar
  119. Maeder, D., Müller, R., Wintersteiger, V.: Über die Linienform monochromatischer y-Strahlungen im Szintillationsspektrographen. Helv. phys. Acta 27, 3–44 (1954)Google Scholar
  120. Maier-Leibnitz, H.: Statistische Schwankungen und optimale Übergangsfunktionen beim Zählhäufig- keitsmesser. Z. angew. Phys. einschl. Nukleonik 9, Nr. 2, 57–60 (1957)Google Scholar
  121. Malm, H.L.: A Mercuric Jodide Gamma-Ray Spectrometer. IEEE Trans, nucl. Sci. NS-19, No. 3, 263–265 (1972)Google Scholar
  122. Malm, H.L., Raudorf, T.W., Martini, M., Zanio, K.R.: Gamma-Ray Efficiency Comparisons for Si(Li), Ge, CdTe and Hgl2 Detectors. IEEE Trans, nucl. Sci. NS-20, No. 1, 500–509 (1973)Google Scholar
  123. Marmier, P., Sheldon, E.: Physics of Nuclei and Particles, Vol. I. New York-London: Academic Press 1969Google Scholar
  124. Martini, M.: Semiconductor Radiation Probes for Nuclear Medicine and Radiobiology. The State of the Art. IEEE Trans, nucl. Sci. NS-20, No. 1, 294–309 (1973)Google Scholar
  125. Menefee, J., Cho, Y., Swinehart, C.: Sodium Activated Cesium Iodide as a Gamma Ray and Charged Particle Detector. IEEE Trans, nucl. Sci. NS-14, Nr. 1, 464–467 (1967)Google Scholar
  126. Meyer, E., Martini, M., Sternberg, J.: Measurement of the Disappearance Rate of 75-Se Sodium Selenite in the Eye of the Rat by a CdTe Medical Probe. IEEE Trans, nucl. Sci. NS-19, No. 3, 237–243 (1972)Google Scholar
  127. Miller, C.E., Marinelli, L.D., Rowland, R.E., Rose, J.E.: Reduction of NaJ Background. Nucleonics 14, No. 4, 40–43 (1956)Google Scholar
  128. Mohindra, V.K., McNeill, K.G., Scintillation Spectra from Point Sources in a Scattering Medium. J. nucl. Med. 6, 747–753 (1965)PubMedGoogle Scholar
  129. Montgomery, C.G., Montgomery, D.D.: Geiger Mueller Counters. J. Franklin Inst. 231, 447–467 und 509–545 (1941)Google Scholar
  130. Moody, N.F.: An Improved dc Amplifier for Portable Ionization Chamber Instruments. Rev. Sci. Instr. 22,236–239 (1951)Google Scholar
  131. Morton, G.A.: The Scintillation Counter Story Part II and III. IEEE Trans, nucl. Sci. NS-22, No. 1, 26–30 (1975)Google Scholar
  132. Morton, G.A., Smith, Jr., H.M., Krall, H.R.: The Performance of High-Gain First-Dynode Photo- multipliers. IEEE Trans, nucl. Sci. NS-16, 92–95 (1969)Google Scholar
  133. Murray, R.B.: Energy Transfer in Alkali Halide Scintillators by Electron-Hole Diffusion and Capture. IEEE Trans, nucl. Sci. NS-22, No. 1, 54–57 (1975)Google Scholar
  134. Narayan, G.H., Prescott, J.R.,: Line-Widths in Nal (Tl) Scintillation Counters for Low Gamma- Rays. IEEE Trans, nucl. Sci. NS-13, 132–137 (1966)Google Scholar
  135. Neiler, J.H., Bell, P.R.: The Scintillation Method. In: Alpha-, Beta- and Gamma-Ray Spectroscopy (K. Siegbahn, Ed.), Vol. 1. Amsterdam: North-Holland Publishing Co. 1965Google Scholar
  136. Nestor, O.H., Huang, C.Y.: Bismuth Germanate: A High-Z Gamma-Ray and Charged Particle Detector. IEEE Trans, nucl. Sci. NS-22, No. 1, 68–71 (1975)Google Scholar
  137. Neuert, H.: Kernphysikalische Meßverfahren zum Nachweis für Teilchen und Quanten. Karlsruhe: G. Braun 1966Google Scholar
  138. Nicholson, P.W.: Nuclear Electronics. London: John Wiley & Sons 1974Google Scholar
  139. Ogata, A., Tao, S.J., Green, J.H.: Recent Developments in Measuring Short Time Intervals by Time- To-Amplitude Converters. Nucl. Instr. Meth. 60, 141–150 (1968)Google Scholar
  140. Oldendorf, W.H.: Photon Spectra of 125I and 129I. J. nucl. Med. 16, 246–247 (1975)PubMedGoogle Scholar
  141. Oosting, J.A.: Semiconductor radiation detectors, application information 470. Hamburg: Valvo GmbH 1974Google Scholar
  142. Palevsky, H., Swank, R.K., Grenchik, R.: Design of Dynamic Condenser Electrometers. Rev. Sci. Instr. 18, 298–314 (1947)Google Scholar
  143. Parekh, C.H.: On the Operational Characteristics of a Gas Flow Counter. Nucl. Instr. Meth. 15, 213–221 (1962)Google Scholar
  144. Paterson, W.L.: Multiplication and Logarithmic Conversion by Operational Amplifier Transistor Circuits. Rev. Sci. Instr. 34, 1311–1316 (1963)Google Scholar
  145. Pearson, K.: On Deviations from the Probable in a Correlated System of Variables. Phil. Mag. 50, 157–175 (1900)Google Scholar
  146. Pehl, R.H., Cordi, R.C.: Lithium-Diffused n+ Contacts on High-Purity Germanium Detectors: How thin can they be made-How stable are they? IEEE Trans, nucl. Sci. NS-22, No. 1, 177 (1975)Google Scholar
  147. Pehl, R.H., Cordi, R.C., Goulding, F.S.: High-Purity Germanium: Detector Fabrication and Performance. IEEE Trans, nucl. Sci. NS-19, No. 1, 265–269 (1972)Google Scholar
  148. Pell, E.M.: Ion Drift in an n-p Junction. J. appl. Phys. 31, 291–302 (1960)Google Scholar
  149. Penick, D.B.: Direct-Current Amplifier Circuits for Use with the Electrometer Tube. Rev. Sci. Instr. 6, 115–120 (1935)Google Scholar
  150. Peter, G., Unholzer, S.: Gasszintillationszähler mit Lichtverstärkungseffekt für die Spektrometrie von geladenen Teilchen geringer Energie. Kerntechnik 9, Nr. 8, 260–261 (1966)Google Scholar
  151. Pfeiff, H., Linhart, G.: Zur Anwendbarkeit miniaturisierter Halbleiterdetektoren in Biologie und Medizin. G-I-T 11, 1161–1164 (1969)Google Scholar
  152. Plesch, R.: Die Minimalwerte der Strahlungsmeß-technik und ihre Abhängigkeit vom Nulleffekt. Atompraxis 7, 300–304 (1961)Google Scholar
  153. Plesch, R.: Die Fehlerstatistik standardbezogener Aktivitätsmessungen. Atompraxis 14, 409–415 (1968)Google Scholar
  154. Plesch, R.: Die Apparatekonstanz in der Meßtechnik nuklearer Strahlung und Röntgenstrahlung. ATM 412, R49-R53 (Mai 1970)Google Scholar
  155. Plesch, R.: Ein statistischer Schnelltest zur Überprüfung impulszählender Geräte. Analysentechnische Mitteilungen Nr. 10, Fa. SiemensHBK**, Mai 1972Google Scholar
  156. Policarpo, A.J., Alves, M.A., Dos Santos, M.C., Carvalho, M.J.: Improved Resolution for Low Energies with Gas Proportional Scintillation Counters. Nucl. Instr. Meth. 102, 337–348 (1972)Google Scholar
  157. Policarpo, A.J., Alves, M.A., Salete, M., Leite, S.C.: Localization of Ionizing Particles with the Gas Proportional Scintillation Counter. Nucl. Instr. Meth. 128, 49–51 (1975)Google Scholar
  158. Polivka, V.: Digital Ratemeter with the Rapid Response Speed. IEEE Trans, nucl. Sci. NS-19, No. 1, 545–553 (1972)Google Scholar
  159. Ponpon, J.P., Stuck, R., Siffert, P., Meyer, B., Schwab, C.: Properties of Vapour Phase Grown Mercuric Iodide Single Crystal Detectors. IEEE Trans, nucl. Sci. NS-22, No. 1, 182–191 (1975)Google Scholar
  160. Porat, D.J.: High-speed scaling with a decade counter tube. Rev. Sci. Instr. 27, 150 (1956)Google Scholar
  161. Prescott, J.R.: Photomultiplier Single-Electron Statistics and the Shape of the Ideal Scintillation Line. Nucl. Instr. Meth. 22, 256–268 (1963)Google Scholar
  162. Price, W.J.: Nuclear Radiation Detection, 2nd ed. New York-San Francisco-Toronto-London: McGraw-Hill 1964Google Scholar
  163. Rainwater, L.J., Wu, C.S.: Applications of Probability Theory to Nuclear Particle Detection. Nucleonics 1, No. 2, 60–69 (1947)Google Scholar
  164. Rajchman, J.A., Snyder, R.L.: An Electrostatically Focused Multiplier Phototube. Electronics 13, 20 (1940)Google Scholar
  165. Rajchman, J.: Static Magnetic Matrix Memory and Switching Circuits. RCA Rev. 13, 183 (1952)Google Scholar
  166. Reynolds, G.T., Harrison, F.B., Salvini, G.: Liquid Scintillation Counters. Phys. Rev. 78, 488 (1950)Google Scholar
  167. Reynolds, R.A., Snyder, R.E., Overton, T.R.: A Multiwire Proportional Chamber Positron Camera: Initial Results. Phys. Med. Biol. 20, No. 1, 136–141 (1975)PubMedGoogle Scholar
  168. Rice-Evans, P.: Spark, Streamer, Proportional and Drift Chambers. London: Richelieu Press 1974Google Scholar
  169. Robinson, L.B.: Reduction of Baseline Shift in Pulse Amplitude Measurements. Rev. Sci. Instr. 32, 1057 (1961)Google Scholar
  170. Rosenblum, L.H., Bartky, W.S., Shaifer, T.R.: A Technique for Measuring Extremely Low Ionization Chamber Currents using MOS Fet Circuitry. IEEE Trans, nucl. Sci. NS-20, No. 1, 221–224 (1973)Google Scholar
  171. Sandstad, J.: Regularizing Action of Scalers. Nucl. Instr. Meth. 4, 243 (1959)Google Scholar
  172. Schiff, L.I.: Statistical Analysis of Counter Data. Phys. Rev. 50, 88–96 (1936)Google Scholar
  173. Schiff, L.I., Evans, R.D.: Statistical Analysis of the Counting Rate Meter. Rev. Sci. Instr. 7, 456–462 (1936)Google Scholar
  174. Schneider, H., Wassel, H.: Temperaturabhängigkeit von Szintillationszählern. Atomkernenergie 6, Nr. 3, 98–100 (1961)Google Scholar
  175. Schonkeren, J.M.: Photomultipliers, Part I. Hamburg: Valvo GmbH 1970Google Scholar
  176. Seeger, K.: Semiconductor Physics. Wien: Springer 1973Google Scholar
  177. Serreze, H.B., Entine, G., Bell, R.O. Wald, F.V.: Advances in CdTe Gamma-Ray Detectors. IEEE Trans, nucl. Sci. NS-21, No. 1, 404–407 (1974)Google Scholar
  178. Shapiro, E.G.: Mosfet Current-To-Frequency Converter with a Linear Sub Picoampere-To-Microam- pere Range. IEEE Trans, nucl. Sci. NS-18, No. 1, 155 (1971)Google Scholar
  179. Siegbahn, K.: Alpha-, Beta- and Gamma-Ray Spectroscopy, Volume 1. Amsterdam: North-Holland Publishing Company 1965Google Scholar
  180. Siffert, P., Cornet, A., Stuck, R., Triboulet, R., Marfaing, Y.: Cadmium Telluride Nuclear Radiation Detectors. IEEE Trans, nucl. Sci. NS-22, No. 1, 211–225 (1975)Google Scholar
  181. Simon, R.E., Williams, B.F.: Secondary-Electron Emission. IEEE Trans, nucl. Sci. NS-15, 167–170 (1968)Google Scholar
  182. Slepian, J.: US Patent 1,450–265, 3.4.1923 (Filed 1919)Google Scholar
  183. Smith, A.H., Clarke, S., Reed, G.W.: A Large 4 tt Plastic Scintillator-Detector with Clinical Applications. Int. J. appl. Radiat. 18, 647–652 (1967)PubMedGoogle Scholar
  184. Stanley, P.E., Scoggins, B.A.: Liquid Scintillation Counting-Recent Developments. New York: Academic Press, Inc. 1974Google Scholar
  185. Strauss, M.G., Sherman, I.S.: Imaging Effeciency of Ge and NaJ (Tl) Gamma-Ray Detectors. IEEE Trans, nucl. Sci. NS-22, No. 1, 331–343 (1975)Google Scholar
  186. Swinth, K.L.: Photon Counting with Fiber-Optic Coupled Scintillators. IEEE Trans, nucl. Sci. NS-21, No. 1, 119–124 (1974)Google Scholar
  187. Tabata, T., Ito, R., Okabe, S.: An Empirical Equation for the Backscattering Coefficient of Electrons. Nucl. Instr. Meth. 94, 509–513 (1971)Google Scholar
  188. Takhar, P.S.: Resolution and Cathode Uniformity in Scintillation Counters. IEEE Trans, nucl. Sci. NS-14, 438–442 (1967)Google Scholar
  189. Taylor, B.N., Parker, W.H., Langenberg, D.N.: Determination of e/h, Using Macroscopic Quantum Phase Coherence in Superconductors: Implications for Quantum Electrodynamics and the Fundamental Physical Constants. Rev. Mod. Phys. 41, 375–496 (1969)Google Scholar
  190. Thiess, P.E., Miley, G.H.: New Near-Infrared and Ultraviolet Gas-Proportional Scintillation Counters. IEEE Trans, nucl. Sci. NS-21, No. 1, 125–145 (1974)Google Scholar
  191. Thomas, St.: N-Decade Count-Rate-Meter with Automatic Scale Change Feature and Resolution of one Decade. IEEE Trans, nucl. Sci. NS-10, No. 1, 36–41 (1963)Google Scholar
  192. Thorington, J.M., Andrews, V.E.: Design and Construction of a Four-Decade Digital Log Ratemeter. IEEE Trans, nucl. Sci. NS-18, No. 1, 148–154 (1971)Google Scholar
  193. Tolmie, R.W., Bristow, Q.: A Digital Ratemeter Controlled by the Input Data Rate. IEEE Trans, nucl. Sci. NS-14, 158–160 (1967)Google Scholar
  194. Tove, P.A.: Scintillation Spectrometry Using Long Light Guides. Rev. Sci. Instr. 27, 143–146 (1956)Google Scholar
  195. Uthgenannt, H.: Resorptionsstudien mit dem 14C02-Exhalationsmeßgerät FHT-50. Nucl.-Med. 5, 298–303 (1966)Google Scholar
  196. Valvo: Halbleiter-Kernstrahlungsdetektoren. Hamburg: Valvo GmbH 1969Google Scholar
  197. Valvo: Fotovervielfacher. Hamburg: Valvo GmbH 1969Google Scholar
  198. Van Duuren, K., Jaspers, A.J.M., Hermsen, J.: G-M Counters. Nucleonics 17, No. 6, 86–94 (1959)Google Scholar
  199. Vaninbroukx, R., Stanef, I.: Present Status in the Field of Precision Liquid Scintillation Counting. Nucl. Instr. Meth. 112, 111–116 (1973)Google Scholar
  200. Van Lieshout, R., Wapstra, A.H., Ricci, R.A., Gir- gis, R.K.: Scintillation Spectra Analysis, in K. Siegbahn: Alpha-, Beta- and Gamma-Ray Spectroscopy, Vol. 1. Amsterdam: North-Holland Publishing Co. 1965Google Scholar
  201. Van Sciver, W.: Alkali Halide Scintillators. IRE Trans, nucl. Sci. NS-3, No. 4, 39–50 (1956)Google Scholar
  202. Van Sciver, W.J., Bogart, L.: Conversion efficiency of scintillation phosphors. Bull. amer. Phys. Soc. 2, 142 (1957)Google Scholar
  203. Van Sciver, W.J., Bogart, L.: Fundamental Studies of Scintillation Phenomena in NaJ. IRE Trans, nucl. Sci. NS-5, Nr. 3, 90–92 (1958)Google Scholar
  204. Vincent, C.H., Rowles, J.B.: A digital linear rateme- ter. Nucl. Instr. Meth. 22, 201–220 (1963)Google Scholar
  205. Wagner, E.B., Hurst, G.S.: A Geiger-Mueller y-Ray Dosimeter with Low Neutron Sensitivity. Health Physics 5, 20–26 (1961)PubMedGoogle Scholar
  206. Wald, F.V., Bullitt, J., Bell, R.O.: Bi2S3 as a High Z Material for y-Ray Detectors. IEEE Trans, nucl. Sci. NS-22, No. 1, 246–250 (1975)Google Scholar
  207. Walenta, A.H., Heintze, J., Schürlein, B.: The Multiwire Drift Chamber A New Type of Propor tional Wire Chamber. Nucl. Instr. Meth. 92, 373–380 (1971)Google Scholar
  208. Walford, G.V., Parker, R.P.: The Development and Application of Coaxial CdTe Medical Probes for Use in the Clinical Environment. IEEE Trans, nucl. Sci. NS-20, No. 1, 318–328 (1973)Google Scholar
  209. Weinzierl, P., Drosg, M.: Lehrbuch der Nuklearelektronik. Wien-New York: Springer 1970Google Scholar
  210. Weise, L.: Berechnungsgrundlagen zur Fehlerstatistik in der Kernstrahlungsmeßtechnik, Teil I. Arch. Techn. Mess. 346, 247–252 (1964)Google Scholar
  211. Weiss, G.: Über Sekundärelektronen-Vervielfacher. Z. techn. Phys. 17, 623–629 (1936)Google Scholar
  212. Wilkinson, D.H.: A Stable Ninety-nine Channel Pulse Amplitude Analyzer for Slow Counting. Proc. Cambridge Phil. Soc. 46, 508–518 (1950)Google Scholar
  213. Willig, W.R.: New Gamma Detectors of Mercury Iodide and other Heavy Metal Compounds. Siemens Forsch., Entwickl.-Ber. 2, Nr. 3, 157–160 (1973)Google Scholar
  214. Wolfgang, L.G., Abraham, J.M., Inskeep, C.N.: Hybrid Photomultiplier Tubes Using Internal Solid State Elements. IEEE Trans, nucl. Sci. NS-13, Nr. 3, 46–53 (1966)Google Scholar
  215. Yarom, A., Ben-Zeev, D., Inbar, D.: Decay Constant of CsJ (Na) Scintillators. Nucl. Instr. Meth. 106, 615–616 (1973)Google Scholar
  216. Zaklad, H., Derenzo, S.E., Budinger, T.F., Alvarez, L.W.: Liquid Xenon Multiwire Proportional Chambers for Nuclear Medicine Applications. World Federation of Nuclear Medicine and Biology 1974. Proceed. First World Congr. Nucl. Medicine, Tokyo 1974, 362–367Google Scholar
  217. Zaklad, H., Derenzo, S.E., Muller, R.A., Smadja, G., Smits, R.G., Alvarez, L.W.: A Liquid Xenon Radioisotope Camera. IEEE Trans, nucl. Sci. NS-19, No. 3, 206–213 (1972)Google Scholar
  218. Zanio, K., Montano, H., Krajenbrink, F., Peterson, G.: CdTe Detectors in Radioimmunoassay Analysis. IEEE Trans, nucl. Sci. NS-22, No. 1, 422–424 (1975)Google Scholar
  219. Zworykin, V.K., Morton, G.A., Malter, L.: The Secondary Emission Multiplier-A New Electronic Device. Proc. Inst. Radio Eng. 24, 351–375 (1936)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1980

Authors and Affiliations

  • K. Jordan

There are no affiliations available

Personalised recommendations