Bone Tumors pp 603-633 | Cite as

Study of Bone Tumors with Radionuclides

  • Ernest W. Fordham
  • Panolil C. Ramachandran
Part of the Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 5 / 6)


Evaluation of the patient with osseous neoplasm has depended on the analysis and correlation of data gained from the patient’s history, physical examination, biochemical determinations, roentgenography, and microscopic examination of biopsy material, occasionally with less than conclusive results. With the recent development of appropriate instrumentation and radiopharmaceuticals, radionuclide imaging has emerged as an additional powerful tool in the study and evaluation of most pathologic processes involving the skeleton.


Bone Tumor Fibrous Dysplasia Bone Scanning Giant Cell Tumor Osteoid Osteoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anger, H.O.: Use of a gamma-ray pinhole camera for in vivo studies. Nature (Lond.) 170, 200 (1949)CrossRefGoogle Scholar
  2. Anger, H.O.: Tomographie gamma-ray scanner with simultaneous readout of several planes. In: Fundamental problems in scanning. Gottschalk, A., Beck,R.N. (Eds.). Springfield: C.C. Thomas, p. 195, 1968Google Scholar
  3. Anger, H.O., van Dyke, D.C.: Human bone marrow distribution shown in vivo by Iron-52 and positron scintillation camera. Science. 144, 1587 (1964)PubMedCrossRefGoogle Scholar
  4. Appelgren, L.E., Nilsson, A., Ullberg, S.: Autoradiographic localization of strontium-85 in osteosarcomas. Acta radiol. [Ther.] (Stockh.) 1, 459 (1963)Google Scholar
  5. Bachman, A.L., Spronl,E.E.: Correlation of radiographic and autopsy findings in suspected metastases in the spine. Bull. N.Y. Acad. Med. 31, 146 (1955)Google Scholar
  6. Bauer, G.C.H.: Rate of bone salt formation in a healing fracture determined in rats by means of radiocalcium. Acta orthop. scand. 23, 169 (1954)PubMedCrossRefGoogle Scholar
  7. Bauer, G.C.H., Wendeberg, B.: External counting of 47Ca and 85Sr in studies of localized skeletal lesions in man. J. Bone Jt Surg. 41B, 558 (1959)Google Scholar
  8. Bauer, G.C.H., Scoccianti, D.: Uptake of 85Sr in non-malignant vertebral lesions in man. Acta orthop. scand. 31, 90 (1961)PubMedCrossRefGoogle Scholar
  9. Bauer, G.C.H., Carlsson, A., Lindquist,B.: Bone salt metabolism in humans studied by means of radiocalcium. Acta med. scand. 158, 143 (1957a)PubMedCrossRefGoogle Scholar
  10. Bauer, G.C.H., Carlsson, A., Lindquist,B.: Metabolism of 140Ba in man. Acta orthop. scand. 26, 241 (1957 b)PubMedGoogle Scholar
  11. Bellin, J., Laszlo, D.: Metabolism and removal of 45Ca in man. Science. 117, 331 (1953)PubMedCrossRefGoogle Scholar
  12. Berg, G.R., Kalisher, L., Osmond, J.D., Pendergrass, H.P., Potsaid,M.S.: 99mTc-diphosphonate concentration in primary breast carcinoma. Radiology. 106, 393 (1973)Google Scholar
  13. Blau, M., Nagler, W., Bender, M.A.: Fluorine-18: A new isotope for bone scanning. J. Nucl. Med. 3, 332 (1962)PubMedGoogle Scholar
  14. Blau, M., Laor, Y., Bender, M.A.: Isotope scanning with 18F for early detection of bone tumors. In: Medical isotope scintigraphy, Vol. III, Vienna, International Atomic Energy Agency, p. 341 (1968)Google Scholar
  15. Blum, T.: Osteomyelitis of Mandible and Maxilla. J. Amer. dent. Ass. 11, 805 (1925)Google Scholar
  16. Bohr, H., Sorensen, A.H.: Study of fracture healing by means of radioactive tracers. J. Bone Jt. Surg. 32a, 567 (1950)Google Scholar
  17. Borak, J.: Relationship between clinical and roentgenological findings in bone metastasis. Surg. Gynec. Obstet. 75, 599 (1942)Google Scholar
  18. Brower, A.C., Culver, J.E., Keats, T.E.: Histological nature of the cortical irregularity of the medial posterior distal femoral metaphysis in children. Radiology 99, 389 (1971)PubMedGoogle Scholar
  19. Campbell, W.W., Greenberg, D.M.: Studies in calcium metabolism with the aid of its induced radioactive isotope. Proc. nat. Acad. Sei. (Wash.) 26, 176 (1940)CrossRefGoogle Scholar
  20. Carlsson, A.: Metabolism of radiocalcium in relation to calcium intake in young rats. Acta pharmacol. (Kbh.) 7, Suppl. 1 (1951)CrossRefGoogle Scholar
  21. Carlsson, A.: On the mechanism of the skeletal turnover of lime salts. Acta physiol. scand. 26, 200 (1952)PubMedCrossRefGoogle Scholar
  22. Cassen, B., Curtis, L., Reed, C., Libby, R.: Instrumentation for 131I use in medical studies. Nucleonics 9, 2, 46 (1951)Google Scholar
  23. Castronovo, F.P., Jr,Callahan, R.J.: A new bone scanning agent. 99mTc labeled 1-hydroxy-ethylidene-1, 1-disodium phosphonate. J. Nucl. Med. 13, 823 (1972)PubMedGoogle Scholar
  24. Charkes, N.D., Sklaroff, D.M.: Early diagnosis of metastatic bone cancer by photoscanning with 85Sr. J. Nucl. Med. 5, 168 (1964)PubMedGoogle Scholar
  25. Charkes, N.D., Sklaroff,D.M.: The radioactive Strontium photoscan as a diagnostic aid in primary and metastatic cancer in bone. Radiol. Clin. N. Amer. 3, 499 (1965)PubMedGoogle Scholar
  26. Charkes, N.D., Sklaroff, D.M., Young, I.: A critical analysis of strontium bone scanning for detection of metastatic cancer. Amer. J. Roentgenol. 96, 647 (1966)PubMedGoogle Scholar
  27. Chiewitz, O., Hevesy, G.: Radioactive indicators in the study of phosphorus metabolism in rats. Nature (Lond.) 136, 754 (1935)CrossRefGoogle Scholar
  28. Conway, J.J.: Personal communication, 1975Google Scholar
  29. Cooke, M.B.D., Clayton, G.D., Kaplan,E.: Scanning scintillation camera with data storage and processing capacity. J. Nucl. Med. 11, 309 (1970)Google Scholar
  30. Cooke, M.B.D., Kaplan, E.: Whole body imaging and count profiling with a modified Anger camera. I. Principles and applications. II. Implementation. J. Nucl. Med. 13, 899 (1972)PubMedGoogle Scholar
  31. Curie, I., Joliot,F.: Physique nucléaire -Un nouveau type de radioactivité. C.R. Acad. Sci. (Paris) 198, 254, 559 (1934)Google Scholar
  32. D. Nardo, G.L.: 85Sr scintiscan in bone disease. Ann. intern. Med. 65, 647 (1966)Google Scholar
  33. D. Nardo, G.L.: Clinical application of bone scintiscans. Clin. Med. 75, 22 (1968)Google Scholar
  34. D. Nardo, G.L., Volbe, J.A.: Detection of bone lesions with 85Sr scintiscan. J. Nucl. Med. 7, 219 (1966)Google Scholar
  35. De Nardo, G.L., Horner, R.W., Leach, P.J., Bowes, D.J.: Radioisotope skeletal scanning. J. Amer. med. Ass. 200, 121 (1967)CrossRefGoogle Scholar
  36. Dubridge, L.A., Marshall,J.: Radioactive isotopes of Sr, Y and Zv. Physiol. Rev. 87, 348 (1940)Google Scholar
  37. Dudley, H.C.: Determination of gallium in biologic materials. J. Pharmacol, exp. Ther. 95, 482 (1949)Google Scholar
  38. Dudley, H.C., Levine, M.D.: Studies of the toxic action of gallium. J. Pharmacol, exp. Ther. 96, 224 (1949)Google Scholar
  39. Dudley, H.C., Maddox, G.E.: Deposition of radio Gallium (72Ga) in skeletal tissues. J. Pharmacol. exp. Ther. 96, 224 (1949)PubMedGoogle Scholar
  40. Durbin, P.W., Asing, C.W., Johnston, M.E., Hamil ton, J.G., Williams, M.H.: The metabolism of the lanthanons in the rat II. Time studies of the tissue deposition of intravenously administered radioisotopes. LJSAEC Report, Orins. 12, 171 (1956)Google Scholar
  41. Dyke, D. van, Anger, H.O., Yano, Y.: Bone blood flow shown with 18F and the positron camera. Amer. J. Physiol. 209, 65 (1965)Google Scholar
  42. Engstedt, L., Franzen, S., Jonsson, L., Larsson, L.G.: In vivo localization of colloidal 198Au intravenously injected in polycythemia vera. Acta radiol. (Stockh.) 49, 66 (1958)CrossRefGoogle Scholar
  43. Erf, L.A., Pecher, C.: Secretion of Radio-Strontium in milk of two cows following intravenous administration. Proc. Soc. exp. Biol. (N.Y.) 45, 762 (1940)Google Scholar
  44. FERRANT, A., RODHAIN, J., MlCHAUX, L., PlRET, L., Maldague, B., Sokal, G.: Detection of skeletal involvement in Hodgkin’s disease : A comparison of radiography, bone scanning, and bone marrow biopsy in 38 patients. Cancer (Philad.) 35, 1346 (1975)CrossRefGoogle Scholar
  45. Fitzer, P.M.: 99mTc-polyphosphate concentration in a neuroblastoma. J. Nucl. Med. 15, 905 (1974)Google Scholar
  46. Fleming, W.H., McIlraith, J.D., King, E.R.: Photoscanning of bone lesions utilizing 85Sr. Radiology. 77, 635 (1961)PubMedGoogle Scholar
  47. Fordham, E.W., Ramachandran, P.C.: Radionuclide imaging of osseous trauma. Sem. Nucl. Med. 4, 4,411 (1974)CrossRefGoogle Scholar
  48. Frankel, R.S., Jones, A.E., Cohen, J.A., Johnson,K.W., Johnston, G.S., Pomeroy, T.C.: Clinical correlations of 67Ga and skeletal whole body radionuclide studies with radiography in Ewing’s sarcoma. Radiology. 110, 597 (1974)PubMedGoogle Scholar
  49. French, R.J., Mc Cready, V.R.: The use of 18F for bone scanning. Brit. J. Radiol. 40, 655 (1967)PubMedCrossRefGoogle Scholar
  50. Geiger, H., Müller, W.: Das Elektronenzählrohr. Wirkungsweise und Herstellung eines Zählrohrs. Physiol. Z. 29, 839,(1928)Google Scholar
  51. Geiger, H., Müller, W.Technische Bemerkungen zum Elektronenzählrohr. Physiol. Z. 30, 489 (1929)Google Scholar
  52. Genant, H.K., Bautovich,G.J., Lathrop, K.A., Harper, P.V.: In vivo study of factors influencing skeletal uptake of bone seeking radionuclides. J. Nucl. Med. 15, 493 (1974)Google Scholar
  53. Gerson, B.D., Dorfman,H.D., Norman, A., Mankin, H.J.: Patterns of localization of 85strontium in osteosarcoma. J. Bone Jt. Surg. 54 A, 817 (1972)Google Scholar
  54. Ghaed, N., Thrall,J.H., Pinsky, S.M., Johnson, M.C.: Detection of extraosseous metastasis from osteosarcoma with 99mTc-polyphosphate bone scanning. Radiology. 112, 373 (1974)PubMedGoogle Scholar
  55. Gilday, D.L.: Diagnosis of obscure childhood osteoid osteomas with bone scan. J. Nucl. Med. 15, 494 (1974).Google Scholar
  56. Gillespie, P.J., Alexander, J.L., Edelstyn, G.A.: Changes in 87mSr concentrations in skeletal metastasis in patients responding to cyclical combination chemotherapy for advanced breast cancer. J. Nucl. Med. 16, 191 (1975)PubMedGoogle Scholar
  57. Girames, G.M., Jensen, C.: Abnormal bone scan in cerebral infarction. J. Nucl. Med. 14, 941 (1973)Google Scholar
  58. Goldman, A.B., Braunstein,D.: Augmented radioactivity on bone scans of limbs bearing osteosarcomas. J. Nucl. Med. 16, 423 (1975)PubMedGoogle Scholar
  59. Goldman, A.B., Becker,M.H., Braunstein, P., Francis, K.C., Genieser, M.D., Firooznia,H.: Bone scanning-osteogenic sarcoma. Correlation with surgical pathology. Amer. J. Roentgenol. 124, 83 (1975)PubMedGoogle Scholar
  60. Gottschalk, R.G., Allen, H.C., Jr.. Uptake of radioactive sulfur by chondrosarcomas in man. Proc. Soc. exp. Biol. (N.Y.) 80, 334 (1952)Google Scholar
  61. Greenberg, D.M.: Studies in mineral metabolism with the aid of artificial radioactive tracers. VIII. Tracer experiments with radioactive calcium and strontium on the mechanism of vitamin D action in rachitic rats. J. biol. Chem. 157, 99 (1945)Google Scholar
  62. Gynning, J., Langeland, D., Lindberg, S., Waldeskog, B.: Localization with 85Sr of spinal metastasis in mammary cancer and changes in uptake after hormone and roentgen-therapy. A preliminary re port. Acta radiol. (Stockh.) 55, 119 (1961)CrossRefGoogle Scholar
  63. Harbert, J.C., Ashburn, W.L.: Radiostrontium bone scanning in Hodgkin’s disease. Cancer (Philad.) 22, 58 (1968)CrossRefGoogle Scholar
  64. Harper, D.V., Gottschalk, A., Charleston,D.B.: Area scanning with Anger camera. The fundamental problems in scanning. Springfield: C.C. Thomas, p. 145, 1968Google Scholar
  65. Hoffman, F.L.: Radium (Mesothorium) necrosis. J. Amer. med. Ass. 85, 961 (1925)CrossRefGoogle Scholar
  66. Hosain, F., Syed, I.B., Wagner, H.N.: Ionic 135mBa for bone scanning. J. Nucl. Med. 11, 328 (1970)Google Scholar
  67. Joliot, F., Curie, I.: Artificial production of a new kind of ratio-element. Nature (Lond.) 133, 202Google Scholar
  68. Jones, H.B., Chaikoff,I.L., Lawrence, J.H.: Phosphorus metabolism of the soft tissues of the normal mouse as indicated by radioactive phosphorus. Amer. J. Cancer. 40, 235 (1940)Google Scholar
  69. Karsher, H.: Der Calcium-und Phosphor Stoffwechsel bei der normalen und gestörten Knochenbruchheilung sowie in frischen und konservierten Transplantaten. Ein Nachweis mit den radioaktiven Isotopen P32 and Ca45. Arch. klin. Chir. 275, 1 (1953)CrossRefGoogle Scholar
  70. Kaye, M., Silverton,S., Rosenthal, L.: Technetium 99m-pyrophosphate: Studies in vivo and vitro. J. Nucl. Med. 16, 40 (1975)PubMedGoogle Scholar
  71. Kniseley, R.M., Andrews,G.A., Tanida, R., Edwards, C.L., Kyker, G.C.: Delineation of active marrow by whole body scanning with radioactive colloids. J. Nucl. Med. 7, 575 (1966)PubMedGoogle Scholar
  72. Lange, R.C., Treves,S., Spencer, R.P.: 135mBa and 131Ba as bone scanning agents. J. Nucl. Med. 11, 340 (1970)Google Scholar
  73. Larson, S.M., Nelp, W.B.: The radiocolloid bone marrow scan in malignant disease. J. surg. Oncol. 3, 685 (1971)CrossRefGoogle Scholar
  74. Lasa, E.D., Perez-Modrego,S.: Detection of cartilaginous tumors with Selenium-75. Radiology. 85, 149 (1965)PubMedGoogle Scholar
  75. Layton, L.L.: Labelled inorganic sulfate in the diagnosis of cartilaginous tumors and their metastasis. Cancer (Philad.) 2, 1089 (1949)CrossRefGoogle Scholar
  76. Lee, V.W., Sano, R., Freedman, G.: Whole body gamma camera imaging using a moving table accessory. J. Nucl. Med. 14, 830 (1973)PubMedGoogle Scholar
  77. Martland, H.S., Conlon, P., Knef, J.P.: Some unrecognized dangers in the use and handling of radioactive substances. J. Amer. med. Ass. 85, 1769 (1925).CrossRefGoogle Scholar
  78. Martland, H.S., Humphries,R.E.: Osteogenic sarcoma in dial painters using luminous paint. Arch. Path. (Chicago) 7, 406 (1929)Google Scholar
  79. Marty, R., Hoffman, H.C.: Bone Scannings: Its use in preoperative evaluation of patients with suspicious breast masses. J. Nucl. Med. 13, 452 (1972)Google Scholar
  80. McLaughlin, A.F.: Uptake of “Tc bone-scanning agent by lungs with metastatic calcifications”. J. Nucl. Med. 16, 322 (1975)PubMedGoogle Scholar
  81. Mc Neil, B.J., Cassady,J.R., Geiser, C.F., Jaffe,N., Traggis, D., Treves, S.: Fluorine 18 Bone scintigraphy in children with osteosarcoma or Ewing’s sarcoma. Radiology. 109, 627 (1973)PubMedGoogle Scholar
  82. McRae, J., Anger, H.O.: Bone imaging with multiplane tomographic scanner. J. Nucl. Med. 15, 516 (1974)Google Scholar
  83. Meyers, W.G.: Radiostrontium-87m. J. Nucl. Med. 1, 125 (1960)Google Scholar
  84. Mulry, W.C., Dudley, H.C.: Studies of radiogallium as a diagnostic agent in bone tumors. J. Lab. clin. Med. 37, 239 (1951)PubMedGoogle Scholar
  85. Nelp, W.B., Lewis, R.J., Larson, S.M.: Distribution of the erythron and the RES in the bone marrow organ. J. Nucl. Med. 7, 366 (1966)Google Scholar
  86. O’Mara, R.E., Brettner, A., Danigelis,J.A., Gould, L.V.: 18F uptake within metastatic osteosarcoma of the liver. Radiology. 100, 113 (1971)PubMedGoogle Scholar
  87. O’Mara, R.E., McAfee, J.G., Subramanian, G.: Clinical experiences with rare earths as bone scanning agents. J. Nucl. Med. 10, 363 (1969)Google Scholar
  88. O’Mara, R.E., Subramanian, G.: Experimental agents for skeletal imaging. Sem. Nucl. Med. 2, 38 (1972)CrossRefGoogle Scholar
  89. Pecher, C.: Radio-calcium and radio-strontium. metabolism in pregnant mice. Proc. Soc. exp. Biol. (N.Y.) 46, 86 (1941)Google Scholar
  90. Pecher, C., Pecher, J.: Radio-calcium and Radiostrontium. Metabolism in Pregnant Mice. Proc. Soc. exp. Biol. (N.Y.) 46, 91 (1941)Google Scholar
  91. Pendergrass, H.P., Potsaid,M.S., Castronovo, F.P.: The clinical use of 99mTc-diphosphonate. Radiology. 107, 557 (1973)PubMedGoogle Scholar
  92. Perez, R., Cohen, Y., Henry, R., Panneciere, C.: A new radiopharmaceutical for 99mTc bone scanning. J. Nucl. Med. 13, 788 (1972)Google Scholar
  93. Poulose, K.P., Reba, R.C., Eckelman, W.C., Goodyear, M.: Extra-osseous localization of 99mTc-Sn pyrophosphate. Brit. J. Radiol. 48, 724 (1975)PubMedCrossRefGoogle Scholar
  94. Richards, A.G.: Metastatic calcification detected through scanning with 99mTc poly phosphate. J. Nucl. Med. 15, 1057 (1974)PubMedGoogle Scholar
  95. Rosenfield, N., Treves, S.: Osseous and extraosseous uptake of Fluorine-18 and Technetium-99m polyphosphate in children with neuroblastoma. Radiology. 111, 127 (1974)PubMedGoogle Scholar
  96. Rubin, P., Brace, K.C., Gump, H., Swarm, R., Andrews, R.: The radiotoxic effects of 35S in growing cartilage. Consideration of radioactive sulfur (35S) as a possible radiotherapeutic agent in chondrosarcoma. Radiology. 69, 711 (1957)PubMedGoogle Scholar
  97. Rutherford, E., Geiger, H.: An electrical method of counting the number of α-particles from radioactive substances. Proc. roy. Soc. A81, 141 (1908)Google Scholar
  98. Samuels, L.D.: Lung scanning with 87mSr in metastatic osteosarcoma. Amer. J. Roentgenol. 104, 766 (1968)PubMedGoogle Scholar
  99. Samuels, L.D.: Diagnosis of malignant bone disease with Strontium 87m scans. J. Canad. med. Ass. 104, 411 (1971)Google Scholar
  100. Sarmiento, A.H., Alba, J., Lanaro, A.E., Dietrich, R.: Evaluation of soft tissue calcifications in dermatomyositis with 99mTc phosphate compounds: Case report. J. Nucl. Med. 16, 467 (1974)Google Scholar
  101. Schall, G.L., Zeiger, L., Primack, A., D. Lellis, R.: Uptake of 85Sr by an osteosarcoma metastatic to lung. J. Nucl. Med. 12, 131 (1971)PubMedGoogle Scholar
  102. Schlundt, H., Barer, H.H., Flinn, F.B.: The detection and estimation of radium and mesothorium in living persons. I. Amer. J. Roentgenol. 21, 345 (1929)Google Scholar
  103. Sharma, S.M., Quinn, J.L.: Sensitivity of 18F bone scans in search for metastasis. Surg. Gynec. Obstet. 135, 536 (1972)PubMedGoogle Scholar
  104. Shirazi, P.H., Rayudu,G.V.S., Fordham, E.W.: Extraosseous osteogenic sarcoma of the small bowel demonstrated by 18F scanning. J. Nucl. Med. 14, 295 (1973)PubMedGoogle Scholar
  105. Shirazi, P.H., Rayudu, G.V.S., Fordham, E.W.: 18F bone scanning: Review of indications and results of 1500 scans. Radiology. 112, 360 (1974a)Google Scholar
  106. Shirazi, P.H., Rayudu, G.V.S., Fordham, E.W.: Review of solitary 18F bone lesions. Radiology. 112, 369 (1974 b)PubMedGoogle Scholar
  107. Shirazi, P.H., Ryan, W.G., Fordham, E.W.: Bone scanning in evaluation of Paget’s disease of bone. CRC Crit. Rev. clin. Radiol. Nucl. Med. 5, 523 (1974c)PubMedGoogle Scholar
  108. Simon, H.: Medial distal metaphyseal femoral irregularity in children. Radiology. 90, 258 (1968)Google Scholar
  109. Singher, H.O., Marinelli,L.: Distribution of radioactive sulphur in the rat. Science. 101, 414 (1945)PubMedCrossRefGoogle Scholar
  110. Sklaroff, D.M., Charkes, N.D.: Diagnosis of bone metastasis by photoscanning with 85Sr. J. Amer. med. Ass. 188, 1 (1964)CrossRefGoogle Scholar
  111. Snell, A.H.: A new radioactive isotope of Fluorine. Physiol. Rev. 51, 143 (1937)Google Scholar
  112. Spencer, R.P., Lange, R.C., Treves, S.: An intermediate-lived radionuclide for bone scanning. J. Nucl. Med. 11, 95 (1970)PubMedGoogle Scholar
  113. Spencer, R.P., Lange, R.C., Treves, S.: Use of 135m Ba and 131 Ba as a bone scanning agents. J. Nucl. Med. 12, 216 (1971)PubMedGoogle Scholar
  114. Staheli, L.T., Nelp, W.B., Marty, R., Griffin, J.T. : The early diagnosis of bone and joint infections in children by 87mSr scanning. J. Nucl. Med. 13, 468 (1972)Google Scholar
  115. Stewart, D.W., Lawson, J.L., Cork, J.M.: Induced radioactivity in strontium and yttrium. Physiol. Rev. 52, 901 (1937)CrossRefGoogle Scholar
  116. Subramanian, G.: 135mBa: Preliminary evaluation of a new radionuclide for skeletal imaging. J. Nucl. Med. 11, 650 (1970)Google Scholar
  117. Subramanian, G., McAfee, J.G. A new complex of 99mTc for skeletal imaging. Radiology. 99, 192 (1971)PubMedGoogle Scholar
  118. Subramanian, G., Mc Afee, J.G., Bell, E.G., Blair, R.J., O’Mara, R.E., Ralston, P.H.: 99mTc-labeled polyphosphate as a skeletal agent. Radiology. 102, 701 (1972a)PubMedGoogle Scholar
  119. Subramanian, G., Mc Afee, J.G., Blair, R.J., Mehter,A., Connor, T.: 99mTc-EHDP: A potential radiopharmaceutical for skeletal imaging. J. Nucl. Med. 13, 947 (1972 b)PubMedGoogle Scholar
  120. Tilden, R.L., Jackson,J., Enneking, W.F., Deland, F.H., Mc Vey, J.T.: 99mTc-polyphosphate: Histological localization in human femurs by autoradiography. J. Nucl. Med. 14, 576 (1973)PubMedGoogle Scholar
  121. Tread well, A.G., Low-Beer, B.V.A., Friedell,H.L., Lawrence, J.H.: Metabolic studies on neoplasm of bone with the aid of radioactive strontium. Amer. J. med. Sei. 204, 521 (1942)Google Scholar
  122. Tubiana, M., Albarede, P. Nahum, H.: Study of radioactive phosphorus (32P) distribution in man by external Bremsstrahlung measurements. In: Proc. Second Intern’l. Conf. Peaceful Uses of Atomic Energy. Vol. 26, p. 217. United Nations. Geneva 1958Google Scholar
  123. Turner, D.A., Fordham, E.W., Ramachandran, P.C., Ali, A., Czerwinski, B.: The Anger tomographic rectilinear scanner. Exhibit at the Society of Nuclear Medicine 21st Annual Meeting, San Diego, June, 1974 and the Radiological Society of North America 60th Annual Meeting, Chicago 1974Google Scholar
  124. Volker, J.F., Sognnaes,R.F., Bibby, B.G.: Studies on the distribution of radioactive fluoride in the bones and teeth of experimental animals. Amer. J. Physiol. 132, 707 (1941)Google Scholar
  125. Wanken, J.J., Eyring,E.J., Samuels, L.D.: Diagnosis of pediatric bone lesions: Correlation of clinical, roentgenographic, 87mSr scan and pathologic diagnosis. J. Nucl. Med. 14, 803 (1973)PubMedGoogle Scholar
  126. Weber, W.G., D. Nardo, G.L., Bergin,J.J.: Scintiscanning in malignant lymphomatous involvement of bone. Arch, intern. Med. 121, 433 (1968)CrossRefGoogle Scholar
  127. Wenzel, W.W., Heasty,R.G.: Uptake of 99mTc-Sn polyphosphate in an area of cerebral infarction. J. Nucl. Med. 15, 207 (1974)PubMedGoogle Scholar
  128. Werff, J.Th. van. der. Clinical investigation on the use of radioactive gallium (66Ga and 67Ga) in bone diseases. Acta radiol. (Stockh.) 41, 343 (1954)CrossRefGoogle Scholar
  129. Wilkinson, G.W., Leblond, C.P.: The deposition of radiophosphorus in fractured bones in rats. Surg. Gynec. Obstet. 97, 143 (1953)PubMedGoogle Scholar
  130. Woodbury, D.H., Beierwalters, W.H.: Fluorine-18 uptake and localization in soft tissue deposits of osteogenic sarcoma in rats and man. J. Nucl. Med. 8, 646 (1967)PubMedGoogle Scholar
  131. Yano, Y., Mc Rae, J., van Dyke, D.C., Anger, H.O.: 99mTc-labeled Sn(II) diphosphonate: A bone scanning agent. J. Nucl. Med. 13, 480 (1972)Google Scholar
  132. Yano, Y., Mc Rae, J., van Dyke, D.C., Anger, H.O.: 99mTc-labeled stannous ethane-l-hydroxy-1, 1-diphosphonate: A new bone scanning agent. J. Nucl. Med. 14, 73 (1973)PubMedGoogle Scholar
  133. Zimmer, A.M., Isitman,A.T., Schmitt, G.H., Holmes,R.A.: Enzymatic inhibition by diphosphonate : A proposed mechanism of tissue uptake. J. Nucl. Med. 15, 546 (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Ernest W. Fordham
  • Panolil C. Ramachandran

There are no affiliations available

Personalised recommendations