Chemical Relaxation Kinetic Studies of E. coli RNA Polymerase Binding to Poly [d(AT)] Using Ethidium Bromide as a Fluorescence Probe

  • T. M. Jovin
  • G. Striker
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 24)

Abstract

Many and perhaps most of the biosynthetic and control mechanisms of a cell are mediated through protein-nucleic acid interactions. Such phenomena are necessarily complex in nature since they involve multisite associations between macromolecules and are subject to a multitude of thermodynamic and environmental influences (temperature, pH, ionic strength, ligands etc.). Unfortunately, detailed information about these processes is available for very few systems to date, due in part to the use of indirect experimental methods (activity measurements, filter binding, ultracen- trifugal analysis, etc.). Kinetic data, in particular, often have been obtained under extreme conditions which may not typify the physiological state.

Keywords

Anisotropy Enthalpy Recombination Bromide Heparin 

Abbreviations

Technical Terms

Hepes

N-2-hydroxyethylpiperazine-N1 -2-ethanesulfonic acid.

Ethidium bromide

2,7-diamino-lO-ethyl-9-phenylphenanthridium bromide.

DTT

dithiothreitol

Poly[d(A-T)]

double-helical alternating Copolymer of deoxyribothymidylate and deoxyboadenylate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AKTIPIS, S., KINDELIS, A.: Optical properties of the deoxyribonucleic acid-ethidium bromide complex. Effect of salt. Biochemistry, 12, 1213–1221 (1973)PubMedCrossRefGoogle Scholar
  2. AKTIPIS, S., PANAYOTATOS, N.: Mechanism of ethidium bromide inhibition of RNA polymerase. Biochem. Biophys. Res. Comm. 68, 465–470 (1976)PubMedCrossRefGoogle Scholar
  3. ALDEN, C.J., ARNOTT, S.: Visualization of planar drug intercalations in B-DNA. Nucl. Acid Res. 2, 1701–1717 (1975)CrossRefGoogle Scholar
  4. ANTHONY, D.D., GOLDTHWAIT, D.A.: Studies with the RNA polymerase III. Enzymatic activity of the monomer form. Biochim. Biophys. Acta 204, 156–167 (1970)PubMedGoogle Scholar
  5. ARNDT-JOVIN,D.J., JOVIN, T.M., BAHR, W., FRISCHAUF, A.M., MARQUARDT, M.: Covalent attachment of DNA to agarose. Improved synthesis and use in affinity chromatography. Europ. J. Bio- chem. 54, 411–418 (1975)Google Scholar
  6. ARNOTT, S., CHANDRASEKARAN, R., HUKINS, D.W.L., SMITH, P.J.C., WATTS, L.: Structural details of a double-helix observed for DNAs containing alternating purine and pyrimidine sequences. J. Mol. Biol. 88, 523–533 (1974).PubMedCrossRefGoogle Scholar
  7. BAHR, W., STENDER, W., SCHEIT, K.-H., JOVIN, T.M.: Binding of rifampicin to Escherichia coli RNA polymerase: thermodynamic and kinetic studies. In: RNA Polymerase. CHAMBERLIN, M., LOSICK, H. (eds.). Cold Spring Harbor, New York: Cold Spring Harbor Lab. 1976, in pressGoogle Scholar
  8. BALDWIN, R.L.: Experimental tests of the theory of deoxyribonucleic acid melting with d(T-A) oligomers. Accounts Chem. Res. 4, 265–272 (1971)CrossRefGoogle Scholar
  9. BAUER, W., VINOGRAD, J.: Interaction of closed circular DNA with intercalative dyes II. The free energy of superhelix formation in SV40 DNA. J. Mol. Biol. 47, 419–435 (1970)PubMedCrossRefGoogle Scholar
  10. BEABEALASHVILLY, R.S., SAVOTCHKINA, L.P.: RNA polymerase-DNA complexes. IV. Influences of the ionic strength on the integrity of the complexes. Biochim. Biophys. Acta 294, 434–441 (1973)PubMedGoogle Scholar
  11. BERG, D., BARRETT, K., CHAMBERLIN, M.: Purification of two forms of E.coli RNA polymerase and of sigma component. In: Methods in Enzymology. COLOWICK, S., KAPLAN, N. (eds.). Vol. 21, pp. 506–619. New York: Academic Press 1971Google Scholar
  12. BERG, D., CHAMBERLIN, M.: Physical studies on ribonucleic agid polymerase from Escherichia coli B. Biochemistry 9, 5055–5064 (1970)PubMedCrossRefGoogle Scholar
  13. BITTMAN, R.: Studies of the binding of ethidium bromide to transfer ribonucleic acid: absorption, fluorescence, ultracentri- fugation and kinetic investigations. J. Mol. Biol. 46, 251–268 (1969)PubMedCrossRefGoogle Scholar
  14. BLAKE, A., PEACOCKE, A.R.: The interaction of aminoacridines with nucleic acids. Biopolymers 6, 1225–1253 (1968)PubMedCrossRefGoogle Scholar
  15. BRAM, S., TOUGARD, P.: Polymorphism of natural DNA. N~ature (New Biol.) 239, 128–131 (1972)Google Scholar
  16. BRESLOFF, J.L., CROTHERS, D.M.: DNA-ethidium reaction kinetics: demonstration of direct ligand transfer between DNA binding sites. J. Mol. Biol. 95, 103–123 (1975)PubMedCrossRefGoogle Scholar
  17. CHAMBERLIN, M.J.: The selectivity of transcription. Ann. Rev. Biochem. 43, 721–775 (1974a)PubMedCrossRefGoogle Scholar
  18. CHAMBERLIN, M.J.: Bacterial DNA-dependent RNA polymerase. In: The Enzymes. BOYER, P.D. (ed.). Vol. 10, pp. 333–374. New York: Academic Press 1974bGoogle Scholar
  19. CHAMBERLIN, M.J., LOSICK, H.: RNA Polymeräse. Cold Spring Harbor, New York: Cold Spring Harbor Lab. 1976Google Scholar
  20. DAVIES, D.R., BALDWIN, R.L.: X-ray studies of two synthetic DNA copolymers. J. Mol. Biol. 6, 251–255 (1963)PubMedCrossRefGoogle Scholar
  21. DICKSON, R.C., ABELSON, J., BARNES, W.M., REZNIKOFF, W.S.: Genetic regulation: the lac control region. Science 187, 27–35 (1975)PubMedCrossRefGoogle Scholar
  22. DOMINGO, E., ESCARMIS, C., WARNER, R.C.: Transcription of Azoto- bacter phage deoxyribonucleic acid. Salt-dependent equilibrium between steps in initiation. J. Biol. Chem. 250, 2872–2877 (1975)PubMedGoogle Scholar
  23. EIGEN, M.: Kinetics of reaction control and information transfer in enzymes and nucleic acids. In: Fast Reactions and Primary Processes in Chemical Kinetics. CLAESSON, S. (ed.). pp. 333- 369. New York: Wiley 1967Google Scholar
  24. EIGEN, M., DE MAEYER, L.: Theoretical basis of relaxation spectrometry. In: Techniques of Chemistry, Vol. VI: Investigation of Rates and Mechanisms of Reactions. HAMMES, G.G. (ed.); pp. 63–146. New York: Wiley 1974Google Scholar
  25. FREIFELDER, D.: Electron microscopic study of the ethidium bro-mide-DNA complex. J. Mol. Biol. 60, 401–403 (1971)PubMedCrossRefGoogle Scholar
  26. FRISCHAUF, A.M., SCHEIT, K.H.: Affinity labeling of E.coli RNA polymerase with substrate and template analogues. Biochem. Biophys. Res. Commun. 53, 1227–1233 (1973)PubMedCrossRefGoogle Scholar
  27. FUCHS, E., MILLETTE, R.L., ZILLIG, W., WALTER, G.: Influence of salts on RNA synthesis by DNA-dependent RNA-polymerase from Escherichia coli. Europ. J. Biochem. 3, 183–193 (1967)CrossRefGoogle Scholar
  28. FULLER, W., WARING, M.J.: A molecular model for the interaction of ethidium bromide with deoxyribonucleic acid. Ber. Bunsenges. Physik. Chem. 68, 805–808 (1964)Google Scholar
  29. GIACOMONI, P.U., LE TALAER, J.Y., LE PECQ, J.B.: Escherichia coli RNA-polymerase binding sites on DNA are only 14 base pairs long and are located between sequences that are very rich in A + T. Proc. Nat. Acad. Sci. (Wash.) 71, 3091–3095 (1974)CrossRefGoogle Scholar
  30. GRINVALD, A., STEINBERG, I.Z.: On the analysis of fluorescence decay kinetics by the method of least-squares. Anal. Biochem. 59, 583–598 (1974)PubMedCrossRefGoogle Scholar
  31. HAMILTON, W.C.: Statistics in Physical Science. 1–230. New York: Ronald 1964Google Scholar
  32. HEYDEN, B., NÜSSLEIN, C., SCHALLER, H.: Initiation of transcription within an RNA-polymerase binding site. Europ. J. Biochem. 55, 147–155 (1975)PubMedCrossRefGoogle Scholar
  33. HINKLE, D.C., CHAMBERLIN, M.J.: Studies of the binding of Escherichia coli RNA polymerase to DNA. I. The role of sigma subunit in site selection. J. Mol. Biol. 70, 157–185 (1972)PubMedCrossRefGoogle Scholar
  34. HSIEH, T.-S., WANG, J.C.: Thermodynamic properties of super-helical DNAs. Biochemistry 14, 527–535 (1975)PubMedCrossRefGoogle Scholar
  35. INMAN, R.B., BALDWIN, R.L.: Helix-random coil transitions in synthetic DNA’s of alternating sequence. J. Mol. Biol. 5, 172–184 (1962)PubMedCrossRefGoogle Scholar
  36. ISHIHAMA, A., HURWITZ, J.: The role of deoxyribonucleic acid in ribonucleic acid synthesis. XVII. Multiple active sites of Escherichia coli ribonucleic acid polymerase. J. Biol. Chem. 244, 6680–6689 (1969)PubMedGoogle Scholar
  37. JONES, O.W., BERG, P.: Studies on the binding of RNA polymerase to polynucleotides. J. Mol. Biol. 22, 199–209 (1966)PubMedCrossRefGoogle Scholar
  38. JOVIN, T.M.: Fluorimetric kinetic techniques: chemical relaxation and stopped-flow. In: Biochemical Fluorescence Concepts. CHEN, R.F., EDELHOCH, H. (eds.); Vol. I, pp. 305–374. New York: Dekker 1975Google Scholar
  39. JOVIN, T.M.: Recognition mechanisms of DNA-specific enzymes. Ann. Rev. Biochem. 45, 889–920 (1976)PubMedCrossRefGoogle Scholar
  40. KELLER, W.: Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc. Nat. Acad. Sci. (Wash.) 72, 4876–4880 (1975)CrossRefGoogle Scholar
  41. KRAKOW, J.S.: Acrylamide gel electrophoresis as a tool for the study of RNA polymerase and the sigma initiation factor. In: Methods in Enzymology, Vol. 21. GROSSMAN, L., MOLDAVE, K. (eds.), pp. 520–528. New York: Academic Press 1971.Google Scholar
  42. KRAKOW, J.S.: Inhibition of Azotobacter vinelandii ribonucleic acid polymerase by glutamyl, tyrosyl copolymers. Biochemistry 13, 1101–1105 (1974)PubMedCrossRefGoogle Scholar
  43. KRAKOW, J.S., VON DER HELM, K.:Azotobaoter RNA polymerase transitions and the release of sigma. Cold Spring Harbor Symp. Quant. Biol. 35, 73–83 (1970)Google Scholar
  44. KRAKOW, J.S., RHODES, G., JOVIN, T.M.: RNA polymerase: catalytic mechanisms and inhibitors. In: RNA Polymerase. CHAMBERLIN, M., LOSICK, H. (eds.). Cold Spring Harbor, New York: Cold Spring Harbor Lab. 1976, pp. 127–157Google Scholar
  45. LANG, D.: Individual macromolecules: preparation and recent results with DNA. Phil. Trans. Roy. Soc. London B 261, 151–158 (1971)PubMedCrossRefGoogle Scholar
  46. LePECQ, J.B., PAOLETTI, C.: A fluorescent complex between ethi-dium bromide and nucleic acids. J. Mol. Biol. 27, 87–106 (1967)PubMedCrossRefGoogle Scholar
  47. LERMAN, L.S.: Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 3, 18–30 (1961)PubMedCrossRefGoogle Scholar
  48. LOEB, J., CAHEN, G.: Extraction a partir des enregistrements de mesures, des paramètres dynamiques d’un système. Automatisme 8, 479–486 (1963)Google Scholar
  49. MAGDE, D., ELSON, E.L., WEBB, W.W.: Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61 (1974)PubMedCrossRefGoogle Scholar
  50. MANGEL, W.F., CHAMBERLIN, M.J.: Studies of ribonucleic acid chain initiation by Escherichia coli ribonucleic acid polymerase bound to T7 deoxyribonucleic acid. I. An assay for the rate and extent of ribonucleic acid chain initiation. J. Biol. Chem. 249, 2995–3001 (1974a)PubMedGoogle Scholar
  51. MANGEL, W.F., CHAMBERLIN, M.J.: Studies of ribonucleic acid chain initiation by Escherichia coli ribonucleic acid polymerase bound to T7 deoxyribonucleic acid. II. The effect of alterations in ionic strength on chain initiation and on the conformation of binary complexes. J. Biol. Chem. 249, 3002–3006 (1974b)PubMedGoogle Scholar
  52. MANGEL, W.F., CHAMBERLIN, M.J.: Studies of ribonucleic acid chain initiation by Escherichia coli ribonucleic acid polymerase bound to T7 deoxyribonucleic acid. III. The effect of temperature on ribonucleic acid chain initiation and on the conformation of binary complexes. J. Biol. Chem. 249, 3007–3013 (1974c)PubMedGoogle Scholar
  53. McGHEE, J.D., VON HIPPEL, P.H.: Theoretical aspects of DNA-pro- tein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–489 (1974)PubMedCrossRefGoogle Scholar
  54. PILET, J., BLICHARSKI, J., BRAHMS, J.: Conformations and structural transitions in polydeoxynucleotides. Biochemistry 14, 1869–1876 (1975)PubMedCrossRefGoogle Scholar
  55. POHL, F.M., JOVIN, T.M., BÄHR, W., HOLBROOK, J.J.: Ethidium bromide as a cooperative effector of a DNA structure. Proc. Nat. Acad. Sci. (Wash.) 69, 3805–3809 (1972)CrossRefGoogle Scholar
  56. PRIBNOW, D.: Bacteriophage T7 early promoters: nucleotide sequences of two RNA polymerase binding sites. J. Mol. Biol. 99, 419–443 (1975a)PubMedCrossRefGoogle Scholar
  57. PRIBNOW, D.: Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc. Nat. Acad. Sci. (Wash.) 72, 784–788 (1975b)CrossRefGoogle Scholar
  58. PULLEYBLANK, D.E., MORGAN, A.R.: The sense of naturally occurring superhelices and the unwinding angle of intercalated ethidium. J. Mol. Biol. 91, 1–13(1975)PubMedCrossRefGoogle Scholar
  59. REINERT, K.E.: DNA stiffening and elongation caused by the binding of ethidium bromide. Biochim. Biophys. Acta 319, 135–139 (1971)Google Scholar
  60. RICHARDSON, J.P.: Some physical properties of RNA polymerase. Proc. Nat. Acad. Sci. (Wash.) 55, 1616–1623 (1966)CrossRefGoogle Scholar
  61. RICHARDSON, J.P.: Mechanism of ethidium bromide inhibition of RNA polymerase. J. Mol. Biol. 78, 703–714 (1973)PubMedCrossRefGoogle Scholar
  62. RIGLER, R., EHRENBERG, M.: Molecular interactions and structure as analyzed by fluorescence relaxation spectroscopy. Quant. Rev. Biophys. 6., 139–199 (1973)CrossRefGoogle Scholar
  63. RIGLER, R., RABL, C.R., JOVIN, T.M.: A temperature-jump apparatus for fluorescence measurements. Rev. Sci. Instrum. 45, 580–588 (1974)CrossRefGoogle Scholar
  64. SAUCIER, J.M., WANG, J.C.: Angular alteration of the DNA helix by E.coli RNA polymerase. Nature (New Biol.) 239, 167–170 (1972)CrossRefGoogle Scholar
  65. SCATCHARD, G.: The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660–672 (1949)CrossRefGoogle Scholar
  66. SCHELLMAN, J.A.: Cooperative multisite binding to DNA. Israel J. Chem. 12, 219–238 (1974)Google Scholar
  67. SCHELLMAN, J.A.: Macromolecular binding. Biopolymers 14, 999–1018 (1975)CrossRefGoogle Scholar
  68. SCHREIBER, J.P., DAUNE, M.P.: Fluorescence of complexes of acri- dine dye with synthetic polydeoxyribonucleotides: a physical model of frameshift mutation. J. Mol. Biol. 83, 487–501 (1974)PubMedCrossRefGoogle Scholar
  69. SMITH, D.A., MARTINEZ, A.M., RATLIFF, R.L., WILLIAMS, D.L., HAYES, F.N.: Template-induced dissociation of ribonucleic acid polymerase. Biochemistry 6, 3057–3063 (1967)PubMedCrossRefGoogle Scholar
  70. SO, A.G., DOWNEY, K.M.: Studies on the mechanism of ribonucleic acid synthesis. II. Stabilization of the deoxyribonucleic acid- ribonucleic acid polymerase complex by the formation of a single phosphodiester bond. Biochemistry 9, 4788–4793 (1970)PubMedCrossRefGoogle Scholar
  71. STEAD, N.W., JONES, O.W.: Stability of RNA polymerase-DNA complexes. J. Mol. Biol. 26, 131–135 (1967)PubMedCrossRefGoogle Scholar
  72. STRNISTE, G.F., SMITH, D.A.: Induction of stable linkage between the deoxyribonucleic acid-dependent ribonucleic acid polymerase and d(A-T) n-d(A-T) n by ultraviolet light. Biochemistry 13, 485- 493 (1974)PubMedCrossRefGoogle Scholar
  73. STUDIER, F.W.: Sedimentation studies of the size and shape of DNA. J. Mol. Biol. 11, 373–390 (1965)PubMedCrossRefGoogle Scholar
  74. THUSIUS, D., FOUCAULT, G., GUILLAIN, F.: The analysis of chemical relaxation amplitudes and some applications to reactions involving macromolecules. In: Dynamic Aspects of Conformation Changes in Biological Macromolecules. SADRON, C. (ed.); pp. 271–284. Dordrecht: De Reidel 1973CrossRefGoogle Scholar
  75. TICHADOU, J.L., GENEST, D., WAHL, P., AUBEL-SADRON, G.: The use of fluorescence anisotropy decay of poly d(A-T) ethidium bromide complex to estimate the unwinding angle of the double helix. Biophys. Chem. 3, 142–146 (1975)PubMedCrossRefGoogle Scholar
  76. TRITTON, T.R., MOHR, S.C.: Relaxation kinetics of the binding of ethidium bromide to unfractionated yeast tRNA at low dye/phosphate ratio. Biochem. Biophys. Res. Commun. 45, 1240–1249 (1971)PubMedCrossRefGoogle Scholar
  77. TRITTON, T.R., MOHR, S.C.: Kinetics of ethidium bromide binding as a probe of transfer ribonucleic acid structure. Biochemistry 12, 905–914 (1973)PubMedCrossRefGoogle Scholar
  78. TSAI, C.-C., JAIN, S.C., SOBELL, H.M.: X-ray crystallographic visualization of drug-nucleic acid intercalative binding: structure of an ethidium-dinucleoside monophosphate crystalline complex, ethidium: 5-iodouridylyl(31-51)adenosine. Proc. Nat. Acad. Sci. (Wash.) 72, 628–632 (1975)CrossRefGoogle Scholar
  79. VALETJR, B., MOIREZ, J.: Analyse des courbes de decroissance multi- exponentielles par la methode des fonctions modulatrices - application a la fluorescence. J. Chim. Phys. 70, 500–506 (1973)Google Scholar
  80. VICTOR, J., HASELKORN, D., PECHT, I.: Direct evaluation of rate constants for an assumed single-step mechanism from chemical relaxation data. Computers Biomed. Res. 6, 121–126 (1973)Google Scholar
  81. WALTER, G., ZILLIG, W., PALM, P., FUCHS, E.: Initiation of DNA- dependent RNA synthesis and the effect of heparin on RNA polymerase. Europ. J. Biochem. 3, 194–201 (1967)PubMedCrossRefGoogle Scholar
  82. WANG, J.C.: The degree of unwinding of the DNA helix by ethidium I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J. Mol. Biol. 89, 783–801 (1974)PubMedCrossRefGoogle Scholar
  83. WARING, M.J.: Complex formation with DNA and inhibition of Escherichia coli RNA polymerase by ethidium bromide. Biochim. Biophys. Acta 87, 358–361 (1964)PubMedGoogle Scholar
  84. WILLIAMS, R.E., SELIGY, V.L.: The interaction of ethidium bromide with synthetic polydeoxyribonucleic acids. Effect of base composition and sequence on the induced circular dichroism spectra. Can. J. Biochem. 52, 281–287 (1974)PubMedGoogle Scholar
  85. WYMAN, J.: A group of thermodynamic potentials applicable to ligand binding by a polyfunctional macromolecule. Proc. Nat. Acad. Sci. (Wash.) 72, 1464–1468 (1975)CrossRefGoogle Scholar
  86. ZUBAY, G., SCHWARTZ, D., BECKWITH, J.: Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc. Nat. Acad. Sci. (Wash.) 66, 104–110 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin . Heidelberg 1977

Authors and Affiliations

  • T. M. Jovin
  • G. Striker

There are no affiliations available

Personalised recommendations