On the Time Required for Conception

  • Mindel C. Sheps
Part of the Biomathematics book series (BIOMATHEMATICS, volume 6)

Abstract

We omit the appendix, and sections of the paper discussing correlations between two successive conception delays and numerical results. (The maximum likelihood estimates for the mean and variance of fecundability, developed in the appendix, are the \(\overline p \) and V p given in our introduction to Henry, paper 41 above.)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Henry, Intervals between confinements in the absence of birth control, Eugenics Quarterly, 5, 1958, pp. 200–11Google Scholar
  2. R.G. Potter, Jr., Birth intervals: Structure and change, Population Studies, 17, 2, 1963, pp. 155–166Google Scholar
  3. M.C. Sheps and E. B. Perrin, in Changes in birth rates as a function of contraceptive effectiveness: some applications of a stochastic modef, American Journal of Public Health, 53, 1963, pp. 1031–46CrossRefGoogle Scholar
  4. M.C. Shefs and E. B. Perrin: The distribution of birth intervals under a class of stochastic fertility models, Population Studies, 17, 3, 1964, 321–31.Google Scholar
  5. 2.
    C. Tietze, ‘Differential fecundity and effectiveness of contraception’. The Eugenics Review, 50, 1959, pp. 231–4Google Scholar
  6. 3.
    R.G. Potter Jr., loc cit., and ‘Length of the observation period as a factor affecting the contraceptive failure rate’, Milhank Memorial Fund Quarterly, 38, 1960, 142–4Google Scholar
  7. C. Gini. ‘Premières recherches sur la fécondabilité de la femme’, Proc. of the International Mathematics Congress, 1924, 889–92Google Scholar
  8. L. Henry, Fondements théoriques des mesures de la fécondité naturelle, Rev. de Flnst. Int. de Statistique, 21, 3, 1953, 135–51CrossRefMathSciNetGoogle Scholar
  9. 6.
    H. Cramér, Mathematical Methods of Statistics, Princeton, 1946, p. 175.MATHGoogle Scholar
  10. 8.
    R.G. Potter, ‘Additional measures of use—effectiveness in contraception’, Milbank Memorial Fund Quarterly 41, 1963, pp. 400–18.CrossRefGoogle Scholar
  11. 9.
    M.G. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 1, London, 1958.Google Scholar
  12. 11.
    E. B. Perrin and M. C. Sheps, ‘Human Reproduction’. A Stochastic Process. Biometrics, 20, 1, 1964, 28–45.CrossRefGoogle Scholar
  13. Z.M. Sykes (1969), who considers the treatment of variances and covariances in different projection models, and Tore Schweder (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1977

Authors and Affiliations

  • Mindel C. Sheps

There are no affiliations available

Personalised recommendations