Advertisement

Numerical Computation of Transonic Flows with Shock Waves

  • Antony Jameson
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

Some recent developments in numerical methods for calculating solutions to the transonic potential flow equation are reviewed, including (1) the construction of stable coordinate independent difference schemes; (2) the use of conservation form to insure proper shock jump conditions; (3) analysis of the relaxation method by the time dependent analogy; (4) accelerated iterative schemes.

Keywords

Shock Wave Computational Fluid Dynamics Transonic Flow Conservation Form Mesh Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morawetz, C. S.: On the nonexistence of continuous flows past profiles, Comm. Pure Appl. Math. 9 (1956) 445–468.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Steger, J. L.; Baldwin, B. S.: Shock waves and drag in the numerical calculation of isentropic transonic flow, NASA TN D-6997, 1972.Google Scholar
  3. 3.
    Lax, Peter D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math. 7 (1954) 159–193.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bateman, H.: Notes on a differential equation which occurs in the two dimensional motion of a compressible fluid and the associated variational problem, Proc. Roy. Soc. Series A. 125 (1929) 598–618.MATHCrossRefADSGoogle Scholar
  5. 5.
    Murman, E. M.; Cole, J. D.: Calculation of plane steady transonic flows, AIAA Journal 9 (1971) 114–121.MATHCrossRefADSGoogle Scholar
  6. 6.
    Murman, Earll M.: Analysis of embedded shock waves calculated by relaxation methods, AIAA Conference on Computational Fluid Dynamics, Palm Springs, July 1973.Google Scholar
  7. 7.
    Garabedian, P. R.; Korn, D. G.: Analysis of transonic airfoils, Comm. Pure Appl. Math. 24 (1972) 841–851.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jameson, Antony: Transonic flow calculations for airfoils and bodies of revolution, Grumman Aerodynamics Report 391-71-1 (December 1971).Google Scholar
  9. 9.
    Jameson, Antony; Iterative solution of transonic flows over airfoils and wings, including flows at Mach 1, Comm. Pure Appl. Math. 27 (1974) 283–309.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    South, J. C; Jameson, A.: Relaxation solutions for inviscid axisymmetric flow over blunt or pointed bodies, AIAA Conference on Computational Fluid Dynamics, Palm Springs (July 1973).Google Scholar
  11. 11.
    Lax, Peter; Wendroff, Burton: Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960) 217–237.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Jameson, Antony: Transonic potential flow calculations using conservation form, Second AIAA Conference on Computational Fluid Dynamics, Hartford, (June 1975).Google Scholar
  13. 13.
    Garabedian, P. R.: Estimation of the relaxation factor for small mesh size, Math. Tables Aids Comp. 10 (1956) 183–185.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Jameson, Antony: An alternating direction method for the solution of the transonic small disturbance equation, New York Univ., ERDA Report COO-3077-96 (1975).Google Scholar
  15. 15.
    Buzbee, B. L.; Golub, G. H.; Nielsen, C. W.: On direct methods of solving Poisson’s equation, SIAM J. Numerical Analysis 7 (1970) 627–656.MATHCrossRefADSGoogle Scholar
  16. 16.
    Fischer, D.; Golub, G.; Hald, O.; Leiva, C; Widlund, O.: On Fourier Toeplitz methods for separable elliptic problems, Math. Comp. 28 (1974) 349–368.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Martin, E. Dale; Lomax, Harvard: Rapid finite difference computation of subsonic and transonic aerodynamic flows, AIAA Paper 74-11 (1974).Google Scholar
  18. 18.
    Periaux, J.: Calcul tridimensionnel de fluides compressibles par la methode des elements finis, 10e Colloque d’Aerodynamique Appliquee, Lille (November 1973).Google Scholar
  19. 19.
    Jameson, Antony: Accelerated iteration schemes for transonic flow calculations using fast Poisson solvers, New York Univ. ERDA Report COO-3077-82 (March 1975).Google Scholar
  20. 20.
    Martin, E. Dale: A fast semi-direct method for computing transonic aerodynamic flows, Second AIAA Computational Fluid Dynamics Conference, Hartford (June 1975).Google Scholar
  21. 21.
    Jameson, Antony: Numerical solution of nonlinear partial differential equations of mixed type, Third Symposium on the Numerical Solution of Partial Differential Equations (SYNSPADE), Univ. of Maryland (May 1975).Google Scholar
  22. 22.
    James, R. M.: A new look at incompressible airfoil theory, McDonnel Douglas Report J 0198 (May 1971).Google Scholar
  23. 23.
    Timman, R.: The direct and inverse problem of airfoil theory. A method to obtain numerical solutions, Nat. Luchtv. Lab. Amsterdam Report F 16 (1951).Google Scholar
  24. 24.
    Hicks, R. M.; Murman, E. M.; Vanderplaats, G. N.: An assessment of airfoil design by numerical optimization, NASA TMX-3092 (1974).Google Scholar
  25. 25.
    Lock, R. C: Test cases for numerical methods in two dimensional transonic flow, AGARD Report 570 (1970).Google Scholar
  26. 26.
    Bauer, F.; Garabedian, P.; Korn, D.; Jameson, A.: Supercritical Wing Sections II, Springer Verlag, New York (1975).MATHGoogle Scholar
  27. 27.
    Bauer, F.; Korn, D.: Computer simulation of transonic flow past airfoils with boundary layer correction, Second AIAA Conference on Computational Fluid Dynamics, Hartford (June 1975).Google Scholar
  28. 28.
    Whitcomb, R. T.: Review of NASA supercritical airfoils, Ninth International Congress on Aeronautical Sciences, Haifa, Israel (1974).Google Scholar

Copyright information

© Springer-Verlag, Berlin/Heidelberg 1976

Authors and Affiliations

  • Antony Jameson
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityUSA

Personalised recommendations