Skip to main content

The Effect of Temperature and pH on Enzyme Activity

  • Chapter
Initial Rate Enzyme Kinetics

Part of the book series: Molecular Biology Biochemistry and Biophysics ((MOLECULAR,volume 22))

Abstract

It has long been recognized that enzyme catalysis is markedly influenced by alterations in the hydrogen ion concentration. MICHAELIS and DAVIDSOHN (1) in 1911 attempted to explain the characteristic bell-shaped velocity versus pH curve obtained for many enzyme catalyzed reactions. They proposed that the enzyme, which was assumed to be amphoteric, could exist in its acidic, basic or isoelectric form, and they suggested that it was this latter state of the enzyme that was catalytically active. Subsequent experimental studies of pH kinetics led MICHAELIS and ROTHSTEIN to propose in 1920 (2) that it was the ionization state of the enzyme substrate complex, rather than of the free enzyme, that caused changes in the rate of catalysis as pH is altered. However, it remained for HALDANE some ten years later to suggest that it was the charge distribution associated with certain functional groups on the enzyme, rather than the isoelectric point of the enzyme, that was responsible for the observed alterations in the rates of enzyme catalysis induced by changes in hydrogen ion concentration (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MICHAELIS, L., DAVIDSOHN, H.: Biochem. Z. 35, 386 (1911).

    Google Scholar 

  2. MICHAELIS, L., ROTHSTEIN, M.: Biochem. Z. 110, 217 (1920).

    CAS  Google Scholar 

  3. HALDANE, J.B.S.: Enzymes. London: Longman, Green and Co. 1930.

    Google Scholar 

  4. WINER, A.D., SCHWERT, G.W.: J. Biol. Chem. 231, 1065 (1958).

    PubMed  CAS  Google Scholar 

  5. ADAMS, M.J., BUEHNER, M., CHANDRASEKHAR, K., FORD, G.C., HACKERT, M.L., LILJAS, A., ROSSMANN, M.G., SMILEY, I.E., ALLISON, W.S., EVERSE, J., KAPLAN, N.O., TAYLOR, S.S.: Proc. Natl. Acad. Sci. U.S. 70, 1968 (1973).

    Article  CAS  Google Scholar 

  6. MICHAELIS, L.: Die Wasserstoffionenkonzentration. Berlin: Springer 1922.

    Google Scholar 

  7. ADAMS, E.Q.: J. Am. Chem. Soc. 38, 1503 (1916).

    Article  CAS  Google Scholar 

  8. FRIEDEN, C., ALBERTY, R.A.: J. Biol. Chem. 212, 859 (1955).

    PubMed  CAS  Google Scholar 

  9. LAIDLER, K.J.: The Chemical Kinetics of Enzyme Action. Oxford University Press, Chapter V (1958).

    Google Scholar 

  10. ALBERTY, R.A.: J. Cell. Comp. Physiol. 47, 245 (1956).

    Article  CAS  Google Scholar 

  11. EULER, H.V., JOSEPHSON, K., MYRBACK, K.: Hoppe-Seyler’s Z. Physiol. Chem. 134, 39 (1924).

    Article  Google Scholar 

  12. OTTOLENGHI, P.: Biochem. J. 123, 445 (1971).

    PubMed  CAS  Google Scholar 

  13. ALBERTY, R.A., MASSEY, V.: Biochim. Biophys. Acta 13, 347 (1954).

    Article  PubMed  CAS  Google Scholar 

  14. DIXON, M.: Biochem. J. 55, 161 (1953).

    PubMed  CAS  Google Scholar 

  15. DIXON, M., WEBB, E.C.: Enzymes, p. 121. New York: Academic Press 1964.

    Google Scholar 

  16. SHUKUYA, R., SCHWERT, G.W.: J. Biol. Chem. 235, 1653 (1960).

    PubMed  CAS  Google Scholar 

  17. GURD, F.R.N., WILCOX, P.E.: Adv. Protein Chem. 11, 311 (1956).

    Article  PubMed  CAS  Google Scholar 

  18. COHN, E.J., EDSALL, J.T.: Proteins, Amino Acids, and Peptides, p. 445. New York: Van Nostrand Reinhold 1943.

    Google Scholar 

  19. BENESCH, R.E., BENESCH, R.: J. Am. Chem. Soc. 77, 5877 (1955).

    Article  CAS  Google Scholar 

  20. BRESLOW, E., GURD, F.R.N.: J. Biol. Chem. 237, 371 (1962).

    PubMed  CAS  Google Scholar 

  21. MURDOCK, A.L., GRIST, K.L., HIRS, C.H.W.: Arch. Biochem. Biophys. 114, 375 (1966).

    Article  CAS  Google Scholar 

  22. HILL, R.J., DAVIS, R.W.: J. Biol. Chem. 242, 2005 (1967).

    PubMed  CAS  Google Scholar 

  23. TIMASHEEF, S.H., GORBUNOFF, M.J.: Annu. Rev. Biochem. 36, 13 (1967).

    Article  Google Scholar 

  24. CARTY, R.P., HIRS, C.H.W.: J. Biol. Chem. 243, 5254 (1968).

    PubMed  CAS  Google Scholar 

  25. SCHMIDT, D.E., WESTHEIMER, F.H.: Biochemistry 10, 1249 (1971).

    Article  PubMed  Google Scholar 

  26. JENCKS, W.P.: Catalysis in Chemistry and Enzymology. New York: McGraw Hill 1969.

    Google Scholar 

  27. COUTTS, S.M.: Ph.D. Dissertation, Harvard University (1967).

    Google Scholar 

  28. FREY, P.A., WESTHEIMER, F.H.: Federation Proc. 29, 1213 (1970).

    Google Scholar 

  29. SCHIMERLIK, M.I., CLELAND, W.W.: J. Biol. Chem. 248, 8418 (1973).

    PubMed  CAS  Google Scholar 

  30. RENARD, M., FERSHT, A.R.: Biochemistry 12, 4713 (1973).

    Article  PubMed  CAS  Google Scholar 

  31. CLELAND, W.W.: The Enzymes 2, 1 (1970).

    Article  CAS  Google Scholar 

  32. ALBERTY, R.A.: The Enzymes 5, 531 (1961).

    CAS  Google Scholar 

  33. BRANT, D.A., BARNETT, L.B., ALBERTY, R.A.: J. Am. Chem. Soc. 85, 2204 (1963).

    Article  CAS  Google Scholar 

  34. WAGNES, T.E., CHAI, H.G., CHARLSON, M.E.: Biochem. Biophys. Res. Commun. 28, 1019 (1967).

    Article  Google Scholar 

  35. TAMMANN, G.A.: Z. Physik. Chem. 18, 426 (1895).

    Google Scholar 

  36. PELZER, H., WIGNER, E.: Z. Physik. Chem. B15, 445 (1932).

    CAS  Google Scholar 

  37. EYRING, H.: J. Chem. Phys. 3, 107 (1935).

    Article  CAS  Google Scholar 

  38. WYNNE-HONES, W.F.K., EYRING, H.: J. Chem. Phys. 3, 492 (1935).

    Article  Google Scholar 

  39. EYRING, H.: Chem. Revs. 17, 65 (1935).

    Article  CAS  Google Scholar 

  40. FROST, A.A., PEARSON, R.G.: Kinetics and Mechanism. New York: John Wiley and Sons, Inc. 1961.

    Google Scholar 

  41. BELL, R.P.: The Proton in Chemistry, p. 183. Ithaca, New York: Cornell Univ. Press 1959.

    Google Scholar 

  42. FOSTER, E.G., COPE, A.C., DANIELS, F.: J. Am. Chem. Soc. 69, 1893 (1947).

    Article  Google Scholar 

  43. BARTLETT, P.D., HIATT, R.R.: J. Am. Chem. Soc. 80, 1398 (1958).

    Article  CAS  Google Scholar 

  44. WESTHEIMER, F.H.: Adv. Enzymol. 24, 441 (1962).

    CAS  Google Scholar 

  45. LINDERSTRøM-LANG, K.U., SCHELLMAN, J.A.: The Enzymes 1, 443 (1959).

    Google Scholar 

  46. HAMMES, G.G.: Nature 204, 342 (1964).

    Article  PubMed  CAS  Google Scholar 

  47. BENDER, M.L., KEZDY, F. J., GUNTER, C.R.: J. Am. Chem. Soc. 86, 3714 (1964).

    Article  CAS  Google Scholar 

  48. WESTLEY, J.: Enzyme Catalysis. New York: Harper and Row 1969.

    Google Scholar 

  49. LUMRY, R.: The Enzymes 1, 157 (1959).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fromm, H.J. (1975). The Effect of Temperature and pH on Enzyme Activity. In: Initial Rate Enzyme Kinetics. Molecular Biology Biochemistry and Biophysics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80966-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80966-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80968-2

  • Online ISBN: 978-3-642-80966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics