Subsidiary Condition and Longitudinal Field

  • J. M. Jauch
  • F. Rohrlich
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

In this chapter we shall discuss some of the peculiarities of the radiation field which have their origin in the vanishing of the photon mass. We begin with a covariant treatment of the Coulomb interaction and the elimination of the longitudinal and zero components of the field (Section 6-1). The construction of the state vector which satisfies the subsidiary condition requires special precautions (Section 6-2). Alternative solutions of this problem are the method of Gupta (Section 6-3), Valatin’s gaugeinvariant interaction (Section 6-4), and the radiation field with small finite mass (Section 6-5).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. M. Dirac, Proc. Roy. Soc. 112, 661 (1926)MATHADSCrossRefGoogle Scholar
  2. J. Schwinger, Phys. Rev, 74, 1439 (1948)MATHADSMathSciNetCrossRefGoogle Scholar
  3. N. Hu, Phys. Rev. 76, 391 (1949)MATHADSCrossRefGoogle Scholar
  4. F. Coester and J. M. Jauch, Phys. Rev. 78, 149, 827 (1950).MATHADSMathSciNetCrossRefGoogle Scholar
  5. Z. Koba, T. Tati. and S. Tomonaga, Progr. Theor. Phys. 2, 198 (1947).ADSMathSciNetCrossRefGoogle Scholar
  6. S. Hayakawa, Y. Miyamoto, S. Tomonaga, J. Phys. Soc. Japan 2, 172 (1947).ADSMathSciNetCrossRefGoogle Scholar
  7. Z. Koba, Y. Oisi, M.’ Sasaki, Progr. Theor. Phys. 3, 141, 229 (1948).ADSMathSciNetGoogle Scholar
  8. J. G. Valatin, Det. Kong. Danske Vid. Selsk, 26, No. 13 (1951).MathSciNetGoogle Scholar
  9. R. Utiyama, T. Imamura, S. Sunakawa, T. Dodo, Progr. of Theor. Phys. 6, 587 (1951).MATHADSMathSciNetCrossRefGoogle Scholar
  10. S. N. Gupta, Proc. Phys. Soc. 63, 681 (1950)ADSCrossRefGoogle Scholar
  11. P. A. M. Dirac, Proc. Roy. Soc. A180, 1 (1942)ADSMathSciNetGoogle Scholar
  12. W. Pauli, Rev. Mod. Phys. 15, 175 (1943).MATHADSMathSciNetCrossRefGoogle Scholar
  13. K. Bleuler, Helv. Phys. Acta 23, 567 (1950).MATHMathSciNetGoogle Scholar
  14. K. Bleuler and W. Heitler, Progr. Theor. Phys. 5, 600 (1950).ADSMathSciNetCrossRefGoogle Scholar
  15. K. F. Novobátsky, Z. Physik 111, 292 (1938).ADSCrossRefGoogle Scholar
  16. F. J. Belinfante and J. S. Lomont, Phys. Rev. 84, 541 (1951).MATHADSMathSciNetCrossRefGoogle Scholar
  17. G. Wentzel, Quantum Theory of Fields, Interscience Publishers, New York, 1949Google Scholar
  18. F. J. Belinfante, Phys. Rev. 76, 66 (1949)MATHADSMathSciNetCrossRefGoogle Scholar
  19. P. T. Matthews, Phys. Rev. 76, 1657 (1949).MATHADSMathSciNetCrossRefGoogle Scholar
  20. E. C. G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938).MATHGoogle Scholar
  21. F. Coester, Phys. Rev. 83, 798 (1951).MATHADSMathSciNetCrossRefGoogle Scholar

Copyright information

© J. M. Jauch and F. Rohrlich 1976

Authors and Affiliations

  • J. M. Jauch
  • F. Rohrlich
    • 1
  1. 1.Department of PhysicsSyracuse UniversitySyracuseUSA

Personalised recommendations