The Optics of Polarization Sensitivity

  • Talbot H. Waterman


No doubt it is foolish to assume without proof that organisms have solved a particular sensing problem in the same way that physicists and engineers have. The animal’s sensory requirements and biophysical repertoire may in fact be quite different from the corresponding human conceptual and instrumental systems. Thus visual polarizers in animals unlike instrumental polarizers which may be extremely specialized in their application, are part of quite general photoreceptor systems which ordinarily have also to discriminate intensity, wavelength, movement, images and so on. Consequently their functional design must involve appropriate compromises to maintain optimal sensing of all significant light parameters. Hence the sharing of input channels and the mechanisms of discrimination are of particular importance. Yet the signal parameters and potential optical means of estimating them are undoubtedly the same as for a manmade polarimeter.


Outer Segment Visual Pigment Stokes Parameter Polarization Sensitivity Retinular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADLER, K., TAYLOR, D.H.: Extraocular perception of polarized light by orienting salamanders. J. comp. Physiol. 87, 203–212 (1973).ADSGoogle Scholar
  2. BOEHM, G.: Ober ein neues entoptisches Phänomen im polarisierten Licht. “Periphere” Polarisationsbüschel. Acta Ophthal. 18, 143–169 (1940).Google Scholar
  3. BOHN, H., TAUBER, U.: Beziehungen zwischen der Wirkung polarisierten Lichtes auf das Elektroretinogramm und der Ultrastruktur des Auges von Gerris lacustris L. Z. vergl. Physiol. 72. 32–53 (1971).Google Scholar
  4. BORSELLINO, A., FUORTES, M.G.F., SMITH, T.G.: Visual responses in Limulus. Cold Spr. Harb, Symp. Quant. Biol. 30, 429–443 (1965).Google Scholar
  5. BROWN, P.K.: Rhodopsin rotates in the visual receptor membrane. Nature New Biol. 236, 35–38 (1972).ADSGoogle Scholar
  6. BUTLER, R., HORRIDGE, G.A.: The electrophysiology of the retina of PeripZaneta americana L. 2. Receptor sensitivity and polarized light sensitivity. J. comp. Physiol. 83, 279–288 (1973).Google Scholar
  7. CARLSON, S.D.,LARSEN, J.R., Jr.: Scanning electron microscopy of the insect compound eye. U. The superposition eye (Manduca sexta). Z. Zellforsch. 126, 446–453 (1972)Google Scholar
  8. CLARKE, D., GRAINGER, J.F.: Polarized Light and Optical Measurements. 187 pp. New York: Pergamon Press 1971.Google Scholar
  9. COMMONER, B., LIPKIN, D.: The application of the Beer-Lambert Law to optically anisotropic systems. Science 110, 41–43 (1949).ADSGoogle Scholar
  10. CONE, R.A,: Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol. 236, 39–43 (1972).Google Scholar
  11. COULSON, K.L.: The polarization of light in the environment. In: Planets, Stars and Nebulae (ed. T. GEHRELS ), pp. 444–471. Tucson: University of Arizona Press 1974.Google Scholar
  12. CRESCITELLI, F,: The visual cells and visual pigments of the vertebrate eye. In: Photochemistry of Vision, Handbook of Sensory Physiology (ed, H.J.A. DARTNALL) Vol. VII/1, pp. 245–363. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  13. CRESCITELLI, F,: The visual cells and visual pigments of the vertebrate eye. In: Photochemistry of Vision, Handbook of Sensory Physiology (ed, H.J.A. DARTNALL) Vol. VII/1, pp. 245–363. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  14. DILL, P.A.: Perception of polarized light by yearling sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Bd. Canada 28, 1319–1322 (1971).Google Scholar
  15. DUELLI, P., WEHNER, R.: The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J. comp. Physiol. 86, 37–53 (1973).Google Scholar
  16. EAKIN, R.M.: Structure of invertebrate photoreceptors. In: Photochemistry of Vision, Handbook of Sensory Physiology (ed. H.J.A. DARTNALL), Vol. VII/1, pp. 625–684, Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  17. EGUCHI, E., WATERMAN, T.H,: Fine structure patterns in crustacean rhabdoms. In: The Functional Organization of the Compound Eye (ed. C.G. BERNHARD ), pp. 105–124. Oxford: Pergamon Press 1966.Google Scholar
  18. EGUCHI, E., WATERMAN, T.H.: Cellular basis for polarized light perception in the spider crab, Libinia, Z. Zellforsch, 84, 87–101 (1968).Google Scholar
  19. EGUCHI, E., WATERMAN, T.H.: Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch. 137, 145–157 (1973)Google Scholar
  20. EGUCHI, E., WATERMAN, T,H., AKIYAMA, J.: Localization of the violet and yellow receptor cells in the crayfish retinula. J. Gen, Physiol. 62, 355–374 (1973).Google Scholar
  21. FERNANDEZ-MORAN, H.: Fine structure of the light receptors in the compound eyes of insects. Exp. Cell Res., Suppl. 5, 586–644 (1958).Google Scholar
  22. FALK, G., FATT, P.: Physical changes induced by light in the rod outer segment of vertebrates. In: Photochemistry of Vision, Handbook of Sensory Physiology (ed. H.J.A. DARTNALL),Vol. VII/1, pp. 200–244, Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  23. FISCHER, W., RÖHLER, R.: Light Absorption in an idealised photoreceptor on the basis of waveguide theory. This volume, pp. 184–195.Google Scholar
  24. FORWARD, R.B., Jr., WATERMAN, T,H.: Evidence for e-vector and light intensity pattern discrimination by the teleost Dermogenys. J. comp, Physiol. 87, 189–202 (1973)Google Scholar
  25. FORWARD, R.B., Jr., HORCH, K.W., WATERMAN, T.H.: Visual orientation at the water surface by the teleost Zenarchopterus. Biol. Bull. 143, 112–126 (1972).Google Scholar
  26. FRISCH, K. von: Tanzsprache und Orientierung der Bienen, 578 pp. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  27. GOLDSMITH, T.H.: Photoreception and Vision. In: Comparative Physiology (C.L. PROSSER) 3rd ed., pp. 577–632. Philadelphia, Pennsylvania: Saunders 1973.Google Scholar
  28. GOLDSMITH, T.H.: The polarisation sensitivity - dichroic absorption paradox in arthropod photoreceptors. This volume, pp. 392–409.Google Scholar
  29. GOLDSMITH, T.H., BERNARD, G.D.: The visual system of insects. In: The Physiology of Insecta, 2nd ed. (ed. M. ROCKSTEIN), Vol. II, pp. 165–272. New York-San Francisco-London: Academic Press 1974.Google Scholar
  30. GRIBAKIN, F.G.: Insect vision–perception of polarized light. Nature (Lond.) 246, 357–358 (1973).ADSGoogle Scholar
  31. GROOT, C.: On the orientation of young sockeye salmon (Oncorhynchus nerka) during their seaward migration out of the lakes. Behaviour, Suppl. 14, 198 pp. Leiden: Brill. 1965.Google Scholar
  32. GRUNDLER, O.J.: Elektronenmikroskopische Untersuchungen am Auge der Honigbiene (Apis mellifica). I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ommatidien verschiedener Augenbereiche und zur Perzeption linear polarisierten Lichtes. Cytobiologie 9 203–220 (1974).Google Scholar
  33. HAGINS, W.A., LIEBMAN, P.A.: The relationship between photochemical and electrical processes in living squid photoreceptors. Abstracts of the Biophysical Society 7th Annual Meeting, New York, N.Y. ME6 (1963).Google Scholar
  34. HARTLINE, H.K., RATLIFF, F.: Inhibitory interaction in the retina of Limulus. In: Physiology of Photoreceptor Organs, Handbook of Sensory Physiology, (ed, M.G.F. FUORTES), Vol. VII/2, pp. 381–447. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  35. HASHIMOTO, H., AOKI, K., WATERMAN, T,H.: Discrimination of evector direction by single units of the goldfish optic tectum. (Abstr.) Amer. Zool. 13, 1305 (Abstr. No. 253) (1973).Google Scholar
  36. HAYS, D., GOLDSMITH, T.H.: MicrospectrophotoHetry of the visual pigment of the spider crab Libinia emarginata. Z. vergl. Physiol. 65, 218–232 (1969).Google Scholar
  37. HAZEN, W.E., BAYLOR, E.R.: Behavior of Daphnia in polarized light. Biol. Bull. 123, 243–252 (1962).Google Scholar
  38. HONIG, B., EBREY, T,G.: The structure and spectra of the chromophore of the visual pigments. Ann. Rev. Biophys. Bioengin. 3, 151–177 (1974).Google Scholar
  39. HORRIDGE, G.A.: Arthropod receptor optics. This volume, pp. 459–478.Google Scholar
  40. IVANOFF, A.: Polarization measurements in the sea. In: Optical Aspects of Oceanography (ed. N.G. JERLOV and E. STEEMANN NIELSEN ), pp. 151–175. London-New York: Academic Press 1974.Google Scholar
  41. IVANOFF, A., WATERMAN, T,H,: Factors, mainly depth and wavelength affecting the degree of underwater light polarization. J. Mar. Res. 16, 283–307 (1958).Google Scholar
  42. JACOBSON, M., GAZE, R.M.: Types of visual response from single units in the optical tectum and optic nerve of the goldfish, Quarto J. Exp. Physiol. 49, 199–209 (1964).Google Scholar
  43. JÄRVILEHTO, M., MORING, J.: Polarization sensitivity of individual retinula cells and neurons of the fly Calliphora. J. comp. Physiol. 91, 387–397 (1974).Google Scholar
  44. KIRSCHFELD, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Mosca. Exp. Brain Res. 3, 248–270 (1967).Google Scholar
  45. KIRSCHFELD, K.: Absorption properties of photopigments in single rods, cones and rhabdomeres. In: Processing of Optical Data by Organisms and Machines (ed. W. REICHARDT),pp. 116–136. New York-London: Academic Press 1969Google Scholar
  46. KIRSCHFELD, K.: Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch. 27b, 578–579 (1972).Google Scholar
  47. KIRSCHFELD, K., SNYDER, A,W.: Waveguide mode effects, birefringence and dichroism in fly photoreceptors. This volume, PP. 56–77.Google Scholar
  48. KIRSCHFELD, K., LINDAUER, M., MARTIN, H.: Problems of menotactic orientation according to the polarized light of the sky, Z. Naturforsch. (in press).Google Scholar
  49. KLEEREKOPER, H., MATIS, J.H., TIMMS, A.M., GENSLER, P.: Locomotor response of the goldfish Carassius auratus to polarized light and its e-vector. J. comp, Physiol. 86, 27–36 (1973).Google Scholar
  50. KREITHEN, M.L., KEETON, W.T.: Detection of polarized light by the homing pigeon, Columba Livia. J. comp. Physiol. 89, 83–92 (1974).Google Scholar
  51. KUNZE, P.: Histologische Untersuchungen zum Bau des Auges von Ocypode cursor (Brachyura). Z. Zellforsch. 82, 466–478 (1967).Google Scholar
  52. KUNZE, P.: Die Orientierung der Retinulazellen im Auge von Ocypode. Z. Zellforsch. 90, 454–462 (1968).Google Scholar
  53. LANGER, H.: Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z. vergl. Physiol. 51, 258–263 (1965).Google Scholar
  54. LATIES, A.M., ENOCH, J.M.: An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors. Investig. Ophthal. 10, 69–77 (1971).Google Scholar
  55. LAUGHLIN, S.B.: Neural integration in the first optic neuropile of dragonflies. II. Receptor signal interactions in the lamina. J. comp. Physiol. 92. 357–376 (1974).Google Scholar
  56. LAUGHLIN, S.B.: Receptor function in the apposition eye. An electrophysiological approach. This volume, pp. 479–498.Google Scholar
  57. LAUGHLIN, S.B., MENZEL, R., SNYDER, A.W.: Membranes, dichroism and receptor sensitivity. This volume, pp. 237–259.Google Scholar
  58. LIEBMAN, P.A.: In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–178 (1962).Google Scholar
  59. LIEBMAN, P.A.: In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–178 (1962).Google Scholar
  60. LIEBMAN, P.A.: Birefringence, dichroism and rod outer segment structure. This volume, pp. 199–214.Google Scholar
  61. LIEBMAN, P.A., JAGGER, W.S., KAPLAN, M.W., BARGOOT, F,G,: Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature 251, 31–36 (1974).ADSGoogle Scholar
  62. McCANN, G,D., ARNETT, D,W,: Spectral and polarization sensitivity of the dipteran visual system. J. gen. Physiol. 59, 534–559 (1972).Google Scholar
  63. MENZEL, R.: Polarization sensitivity in insect eyes with fused rhabdoms. This volume, pp. 372–387.Google Scholar
  64. MENZEL, R., SNYDER, A.W.: Polarized light detection in the bee, Apis mellifera. J. comp. Physiol. 88, 247–270 (1974).Google Scholar
  65. MEYER-ROCHOW, V.B.: A crustacean-like organization of insect-rhabdoms. Cytobiologie 4, 241–249 (1971).Google Scholar
  66. MEYER-ROCHOW, V.B.: Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom. J. Insect Physiol. 20, 573–589 (1974).Google Scholar
  67. MOODY, M,F.: Evidence for the intraocular discrimination of vertically and horizontally polarized light by Octopus. J. Exp. Biol. 39, 21–30 (1962).Google Scholar
  68. MOODY, M.F.: Photoreceptor organelles in animals. Biol. Rev. 39, 43–86 (1964).Google Scholar
  69. MOODY, M.F „ PARRISS, J,R.: The discrimination of polarized light by Octopus: a behavioral and morphological study. Z. vergl. Physiol. 44, 268–291 (1961)Google Scholar
  70. MOTE, M,I,: Polarization sensitivity. A phenomenon independent of stimulus intensity or state of adaptation in retinular cells of the crabs Carcinus and Callinectes. J. comp. Physiol. 90, 389–403 (1974).Google Scholar
  71. MULLER, K.J.: Photoreceptors in the crayfish compound eye: electrical interactions between cells as related to polarized light sensitivity. J. Physiol. 232, 573–595 (1973).Google Scholar
  72. NOSAKI, H.: Electrophysiological study of color encoding in the compound eye of crayfish, Procambarus clarkii. Z. vergl. Physiol. 64, 318–323 (1969).Google Scholar
  73. ROMHANYI, G., MOLNAR, L.: Optical polarisation indicates linear arrangement of rhodopsin oligosaccharide chain in rod disk membranes of frog retina. Nature (Lond,) 249, 486–488 (1974).ADSGoogle Scholar
  74. SCHMIDT, W.J.: Doppelbrechung, Dichroismus and Feinbau des Außengliedes der Sehzellen vom Frosch. Z. Zellforsch. 22, 485–522 (1935).Google Scholar
  75. SCHMIDT, W.J.: Polarisationsoptische Analyse eines Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen. Kolloid-Z. 85, 137–198 (1938).Google Scholar
  76. SCHNEIDER, L., LANGER, H.: Die Struktur des Rhabdomes im “Doppelauge” des Wasserläufers Gerris Zacustris. Z. Zellforsch. 99, 538–559 (1969).Google Scholar
  77. SCHWASSMANN, H.D., KRUGER, L.: Organization of the visual projection upon the optic tectum of some freshwater fish. J. comp. Neurol. 124, 113–126 (1965).Google Scholar
  78. SHAW, S.R.: Polarized light responses from crab retinula cells. Nature 211, 92–93 (1966).ADSGoogle Scholar
  79. SHAW, S.R.: Simultaneous recording from two cells in the locust retina. Z. vergl. Physiol. 55, 183–194 (1967).Google Scholar
  80. SHAW, S.R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9, 999–1029 (1969a).Google Scholar
  81. SHAW, S.R.: Sense-cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res. 9, 1031–1040 (1969b).Google Scholar
  82. SHAW, T.I.: The circular dichroism and optical rotatory dispersion of visual pigments. In: Photochemistry of Vision, Handbook of Sensory Physiology (ed. H.J.A. DARTNALL), Vol. VII/1, pp. 180–199. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  83. SHURCLIFF, W.A.: Haidinger’s brushes and circularly polarized light. J. Opt. Soc. Am. 45, 399 (1955).Google Scholar
  84. SHUTE, C.C.D.: Haidinger’s brushes and predominant orientation of collagen in corneal stroma. Nature 250, 163–164 (1974).ADSGoogle Scholar
  85. SMOLA, U., GEMPERLEIN, R.: Obertragungseigenschaften der Sehzelle der Schmeissfliege Calliphora erythrocephaZa. 2. Abhängigkeit vom Ableitort: Retina–Lamina ganglionaris. J. comp. Physiol. 79, 363–393 (1972).Google Scholar
  86. SNYDER, A.W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol. 83, 331–360 (1973a).Google Scholar
  87. SNYDER, A.W.: How fish detect polarized light. Investig. Ophthal. 12, 78–79 (1973b).Google Scholar
  88. SNYDER, A.W.: Leaky-ray theory of optical waveguides of circular cross-section. Appl. Phys. 4, 273–298 (1974).ADSGoogle Scholar
  89. SNYDER, A.W.: Photoreceptor optics - theoretical principles. This volume, pp. 38–55. SNYDER, A.W., LAUGHLIN, S.B.: Dichroism and absorption by photoreceptors. J. comp. Physiol. In press (1975).Google Scholar
  90. SNYDER, A.W., McINTYRE, P.: Polarization sensitivity of twisted, fused rhabdoms. This volume, pp. 388–391.Google Scholar
  91. SNYDER, A.W., MILLER, W.H.: Fly colour vision. Vision Res. 12, 1389–1396 (1972). SNYDER, A.W., PASK, C.: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol, 84, 59–76 (1973).Google Scholar
  92. SNYDER, A.W., SAMMUT, R.: Direction of E for maximum response of a retinula cell. J. comp. Physiol. 85, 37–45 (1973).Google Scholar
  93. SNYDER, A.W., MENZEL, R., LAUGHLIN, S.B.: Structure and function of the fused rhabdom. J. comp. Physiol. 87, 99–135 (1973).Google Scholar
  94. STAVENGA, D.G.: Visual receptor optics, rhodopsin and pupil in fly retinula cells. Thesis, Rijksuniversiteit, Groningen; 88 pp. 1974Google Scholar
  95. STOCKHAMMER, K.: Die Orientierung nach der Schwingungsrichtung linear polarisierten Lichtes and ihre sinnesphysiologischen Grundlagen. Ergeb. Biol. 21, 23–56 (1959).Google Scholar
  96. TASAKI, K., KARITA, K.: Discrimination of horizontal and vertical planes of polarized light by the cephalopod retina. Jap. J. Physiol. 16, 205–216 (1966).Google Scholar
  97. TAYLOR, D.H., ADLER, K.: Spatial orientation by salamanders using plane polarized light. Science 181, 285–287 (1973).ADSGoogle Scholar
  98. TRUJILLO-CENOZ, O.: Some aspects of the structural organization of the intermediate retina of dipterans. J. Ultrastruct. Res. 13, 1–33 (1965)Google Scholar
  99. TRUJILLO-CENÓZ, O., BERNARD, G.D.: Some aspects of the retinal organization of Sympycnus Zineatus Loew (Diptera, Dolichopodidae). J. Ultrastruct. Res. 38, 149–160 (1972).Google Scholar
  100. TYLER, J.E.: Heuristic arguments for the pattern of polarization in deep ocean water. In: Planets, Stars and Nebulae (ed. T. GEHRELS ), pp. 434–471. Tucson: University of Arizona Press 1974.Google Scholar
  101. WALD, G., BROWN, P,K., GIBBONS, I.R.: Visual excitation: a chemo-anatomical study. Symp. Soc. Exp. Biol. 16, 32–57 (1962).Google Scholar
  102. WATERMAN, T.H.: Polarization patterns in submarine illumination. Science 120, 927–932 (1954a).ADSGoogle Scholar
  103. WATERMAN, T.H.: Directional sensitivity of single ommatidia in the compound eye of Limulus. Proc. Nat. Acad. Sci. 40, 252–257 (1954b).ADSGoogle Scholar
  104. WATERMAN, T.H.: Polarized light and angle of stimulus incidence in the compound eye of Limulus. Proc. Nat. Acad, Sci. 40, 258–262 (1954c).ADSGoogle Scholar
  105. WATERMAN, T.H.: The problem of polarized light sensitivity (Abstr.), Proc. XVth Internat. Cong. Zool., London 1958, pp. 537–539 (1959).Google Scholar
  106. WATERMAN, T,H.: Light sensitivity and vision. In: The Physiology of Crustacea (ed. T.H. WATERMAN), Vol. II, pp. 1–64. New York: Academic Press 1961.Google Scholar
  107. WATERMAN, T.H.: Systems analysis and the visual orientation of animals. Amer. Sci. 54, 15–45 (1966a).Google Scholar
  108. WATERMAN, T.H.: Information channeling in the crustacean retina, In: Proceedings of the Symposium on Information Processing in Sight Sensory Systems (ed. P.W. NYE ), pp. 48–56. California Institute of Technology, Pasadena 1966b.Google Scholar
  109. WATERMAN, T.H.: Polarotaxis and primary photoreceptor events in Crustacea, In: The Functional Organization of the Compound Eye (ed, C.G. BERNHARD ), pp. 493–511. Oxford: Pergamon Press 1966c.Google Scholar
  110. WATERMAN, T.H,: Visual direction finding by fishes. In: Animal Orientation and Navigation (ed, S.R. GALLER, K. SCHMIDT-KOENIG, G.J. JACOBS, R E BELLEVILLE ), pp. 437–456. Washington: National Aeronautics and Space Administration 1972.Google Scholar
  111. WATERMAN, T.H.: Responses to polarized light: animals. In: Biology Data Book, 2nd ed., (ed. P.L. ALTMAN, D.S. DITTMER), Vol. II, pp. 1272–1289. Bethesda, Maryland: Federation of American Societies for Experimental Biology 1973.Google Scholar
  112. WATERMAN, T.H,: Underwater light and the orientation of animals, In: Optical Aspects of Oceanography (ed, N.G. JERLOV, E. STEEMANN NIELSEN), pp. 415–443. London: Academic Press 1974aGoogle Scholar
  113. WATERMAN, T.H.: Polarimeters in animals. In: Planets, Stars and Nebulae (ed. T. GEHRELS ), pp. 472–494, Tucson: University of Arizona Press 1974b.Google Scholar
  114. WATERMAN, T,H,: Natural polarized light and e-vector discrimination by vertebrates. In: Light as an Ecological Factor II (ed. R. BAINBRIDGE, G.C. EVANS). British Ecological Society Symposium, Cambridge. (In press).Google Scholar
  115. WATERMAN, T.H., AOKI, K.: E vector sensitivity patterns in the goldfish optic tectum. J. comp. Physiol. 95 13–27 (1974)Google Scholar
  116. WATERMAN, T,H., FERNANDEZ, H.R.:E-vector and wavelength discrimination by retinular cells of the crayfish Procambarus. Z, vergl, Physiol. 68, 154–174 (1970).Google Scholar
  117. WATERMAN, T,H., FERNANDEZ, H.R., GOLDSMITH, T,H.: Dichroism of photosensitive pigment in rhabdoms of the crayfish Orconectes. J. gen. Physiol. 54, 415–432 (1969).Google Scholar
  118. WATERMAN, T.H., FORWARD, R;B., Jr.: Field demonstration of polarotaxis in the fish Zenarchopterus. J. Exp. Zool. 180, 33–54 (1972).Google Scholar
  119. WATERMAN, T.H., HASHIMOTO, H.: E-vector discrimination by the goldfish optic tectum. J. comp. Physiol, 95, 1–12 ( 1974.Google Scholar
  120. WATERMAN, T.H., HORCH, K,W.: Mechanism of polarized light perception. Science 154, 467–475 (1966).ADSGoogle Scholar
  121. WATERMAN, T,H.,WIERSMA, C.A.G.: Electrical responses in decapod crustacean visual systems. J. Cell. Comp. Physiol, 61, 1–16 (1963).Google Scholar
  122. WATERMAN, T.H „ WIERSMA, C.A.G., BUSH, B,M.H.: Afferent visual responses in the optic nerve of the crab, Podophthalmus, J. C.ll. Comp. Physiol. 63, 135–156 (1964).Google Scholar
  123. WOLSTENCROFT, R.D,: The circular polarization of light reflected from certain optically active surfaces. In: Planets, Stars and Nebulae (ed. T. GEHRELS), pp. 495–499. Tucson: University of Arizona Press 1974Google Scholar
  124. WORTHINGTON, C.R.: Structure of photoreceptor membranes, Ann. Rev. Biophys, Bio-engin. 3, 53–81 (1974).Google Scholar
  125. YOUNG, J.Z.: The Anatomy of the Nervous System of Octopus vulgaris. 690 pp. Oxford: Oxford University Press 1971Google Scholar
  126. ZOLOTOV, V., FRANTSEVICH, L.: Orientation of bee by the polarised light of a limited area of the sky. J. comp. Physiol, 85, 25–36 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • Talbot H. Waterman

There are no affiliations available

Personalised recommendations