Dark Regeneration of Invertebrate Visual Pigments

  • Doekele G. Stavenga

Abstract

The question of whether or not the visual pigments of invertebrates are regenerated in the dark has been the subject of a vivid debate at the Darmstadt congress. This account has been prepared as a survey of the present-day state of the problem.

Keywords

Sugar Hydrolysis Isomerase Dehyde 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BONTING, S.L.: General discussion concluding the Bochum symposium, 1972. In: Biochemistry and Physiology of Visual Pigments (ed. H. LANGER).Berlin-HeidelbergNew York: Springer 1973.Google Scholar
  2. BROWN, P.K., WHITE, R.H.: Rhodopsin of the larval mosquito. J. gen. Physiol. 59, 401–414 (1972).CrossRefGoogle Scholar
  3. DAEMEN, F.J.M., ROTMANS, J.P., BONTING, S.L.: On the rhodopsin cycle. Exp. Eye Res. 18, 97–103 (1974).CrossRefGoogle Scholar
  4. FEIN, A., CONE, R.A.: Limulus rhodopsin: Rapid return of transient intermediates to the thermally stable state. Science 182, 495–497 (1973).CrossRefADSGoogle Scholar
  5. FEIN, A., DeVOE, R.D.: Adaptation in the ventral eye of Limulus is functionally independent of the photochemical cycle, membrane potential and membrane resistance. J. gen. Physiol. 61, 273–289 (1973).Google Scholar
  6. FRANCESCHINI, N.: Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications. This volume, pp. 98–125.Google Scholar
  7. FRANCESCHINI, N., KIRSCHFELD, K,: Les phénoménes de pseudopupille dans l’oeil composé de Drosophila. Kybernetik 9, 159–182 (1971).CrossRefGoogle Scholar
  8. GOLDSMITH, T.H.: The natural history of invertebrate visual pigments. In: Handbook of Sensory Physiology (ed. H.J.A. DARTNALL), Vol. VII/1, pp. 685–719. BerlinHeidelberg-New York: Springer 1972.Google Scholar
  9. GOLDSMITH, T.H., BERNARD, G.D.: The visual system of insects. In: The Physiology of Insecta (ed. M. ROCKSTEIN),Vol. II, pp. 165–272. San Francisco: Academic Press 1974.Google Scholar
  10. GOLDSMITH, T.H., BRUNO, M.S.: Behavior of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster. In: Biochemistry and Physiology of Visual Pigments.(ed. H. LANGER), pp. 147–153.Google Scholar
  11. HAMDORF, K.: Korrelationen zwischen Sehfarbstoffgehalt und Empfindlichkeit beiPhotorezeptoren. Verh. Dtsch. Zool, Ges., Köln 1970. 64, 148–158 (1970).Google Scholar
  12. HAMDORF, K., GOGALA, M.: Photoregeneration und Bereichseinstellung der Empfindlich-keit beim UV-Rezeptor. J. comp. Physiol. 86, 231–245 (1973).CrossRefGoogle Scholar
  13. HAMDORF, K., GOGALA, M., SCHWEMER, J.: Beschleunigung der “Dunkeladaptation” eines UV-Rezeptors durch sichtbare Strahlung. Z. vergl. Physiol. 75, 189–199 (1971).Google Scholar
  14. HAMDORF, K„ HÖGLUND, G., LANGER, H.: Photoregeneration of visual pigments in amoth. J. comp. Physiol. 86, 247–263 (1973).CrossRefGoogle Scholar
  15. HILLMAN, P., DODGE, F.A., HOCHSTEIN, S., KNIGHT, B.W., MINKS, B.: Rapid dark recovery of the invertebrate early receptor potential. J. gen. Physiol. 62, 77–86 (1973).CrossRefGoogle Scholar
  16. HOGLUND, G., HAMDORF, K., ROSNER, G.: Trichromatic visual system in an insect and its sensitivity control by blue light. J. comp. Physiol. 86, 265–279 (1973).CrossRefGoogle Scholar
  17. HUBBARD, R., ST. GEORGE, R.C.C.: The rhodopsin system of the squid. J. gen. Physiol. 41, 501–528 (1958).CrossRefGoogle Scholar
  18. LANGER, H.: Properties and Functions of Screening Pigments in Insect Compound Eyes, this volume, pp. 429–455.Google Scholar
  19. MILLER, W.H., BERNARD, G.D,: Butterfly glow. J. Ultrastruct. Res. 24, 286–294 (1968).CrossRefGoogle Scholar
  20. MINKS, B., HOCHSTEIN, S., HILLMAN, P,: Derivation of a quantitative kinetic model for a visual pigment from observations of early receptor potential. Biophys. J. 14, 490–512 (1974).CrossRefGoogle Scholar
  21. MORTON, R.A.: The chemistry of the visual pigments. In: Handbook of Sensory Physiology (ed. H.J.A. DARTNALL), Vol. VII/1, pp. 33–68. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  22. PAK, W.L., LIDINGTON, K.J.: Fast electrical potential from a long-lived, long-wave-length photoproduct of fly visual pigment. J. gen. Physiol. 63, 740–756 (1974).CrossRefGoogle Scholar
  23. SCHWEMER, J.: Der Sehfarbstoff von Eledone moschata and seine Umsetzungen in der lebenden Netzhaut. Z. vergl. Physiol. 62, 121–152 (1969)Google Scholar
  24. STAVENGA, D.G.: Visual adaptation in butterflies. Submitted to Nature (1975).Google Scholar
  25. STAVENGA, D.G.: Optical Qualities of the Fly Eye, An Approach from the Side of Geometrical, Physical and Waveguide Optics. This volume, pp. 126–144.Google Scholar
  26. STAVENGA, D.G., FLOKSTRA, J,H., KUIPER, J.W.: Action of visual pigment conversions on the pupil mechanism of flies. Submitted in a revised version to Nature (1975).Google Scholar
  27. STAVENGA, D.G., ZANTEMA, A., KUIPER, J.W.: Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and Physiology of Visual Pigments (ed. H. LANGER ), pp. 175–180. Berlin-Heidelberg-New York: Springer 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • Doekele G. Stavenga

There are no affiliations available

Personalised recommendations