Primary Productivity of Marine Ecosystems

  • John S. Bunt
Part of the Ecological Studies book series (ECOLSTUD, volume 14)


With current effort, the sea is yielding roughly 60 million tons of fish annually and until as recently as 1969 the catches were increasing steadily. Can harvests of this intensity be sustained? Can they be raised? To answer these questions, reliable knowledge of marine primary production is needed. This chapter deals with estimations of marine production and with the difficulties and uncertainties to which they are subject.


Net primary production marine ecosystems ecology global overview global pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G. C. 1969. Subsurface chlorophyll maximum in the northeast Pacific Ocean. LimnoL Oceanogr. 14:386–391.CrossRefGoogle Scholar
  2. Anon. 1973. A guide to the measurement of marine primary production under some special conditions.Monographs on Oceanographic Methodology, No. 3, 73 pp. Paris: UNESCO.Google Scholar
  3. Bakus, G. J. 1967. The feeding habits of fishes and primary production at Eniwetok, Marshall Islands. Micronesica 3:135–149.Google Scholar
  4. Barber, R. T., R. C. Dugdale, J. J. Maclsaac, and R. L. Smith. 1972. Variations in phytoplankton growth associated with the source and conditioning of upwelling water. Invest. Pesquera 35:171–193.Google Scholar
  5. Bellamy, D. J., D. M. John, and A. Whittick. 1968. The “kelp forest ecosystem” as a “phytometer” in the study of pollution of the inshore environment. Underwater Assoc. Rep. 79–82.Google Scholar
  6. ——, A. Whittick, D. M. John, and D. J. Jones. 1973. A method for the determination of seaweed production based on biomass estimates. Monographs on Oceanographic Methodology, No. 3, pp. 27–33. Paris: UNESCO.Google Scholar
  7. Bunt, J. S. 1963. Diatoms of Antarctic sea ice as agents of primary production. Nature (London) 199:1255–1257.CrossRefGoogle Scholar
  8. ——. 1965. Measurements of photosynthesis and respiration in a marine diatom with the mass spectrometer and with carbon-14. Nature (London) 207:1373–1375.CrossRefGoogle Scholar
  9. ——. 1968. Some characteristics of microalgae isolated from Antarctic sea ice. Antarctic Res. Ser. 11:1–14.CrossRefGoogle Scholar
  10. ——, and C. C. Lee. 1970. Seasonal primary production in Antarctic sea ice at McMurdo Sound in 1967. J. Marine Res. 28:304–320.Google Scholar
  11. Bunt, J. S., C. C. Lee, and E. Lee. 1972. Primary productivity and related data from tropical and subtropical marine sediments. Marine Biol. 16:28–36.CrossRefGoogle Scholar
  12. Dugdale, R. C. 1967. Nutrient limitation in the sea: Dynamics, identification, and significance. Limnol. Oceanogr. 12:685–695.CrossRefGoogle Scholar
  13. Eppley, R. W., J. N. Rogers, and J. J. McCarthy. 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14:912–920.CrossRefGoogle Scholar
  14. ——, and J. D. H. Strickland. 1968. Kinetics of marine phytoplankton growth. Advan. Microbiol. Sea 1:23–62.Google Scholar
  15. FAO. 1971. Yearbook of Fishery Statistics, Vol. 30: Catches and Landings, 469 pp. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  16. Heald, E. J. 1971. Estuarine and coastal studies: The production of organic detritus in a south Florida estuary. Sea Grant Tech. Bull. No. 6, pp. 1–105. Coral Gables, Florida: Univ. of Miami.Google Scholar
  17. Hickling, C. F. 1970. Estuarine fish farming. Advan. Marine Biol. 8:119–213.CrossRefGoogle Scholar
  18. Hutner, S. H., and L. Provasoli. 1964. Nutrition of algae. Annu. Rev. Plant Physiol. 15:37–56.CrossRefGoogle Scholar
  19. Jackson, W. A., and R. J. Volk. 1970. Photorespiration. Annu. Rev. Plant Physiol. 21:385–432.CrossRefGoogle Scholar
  20. Johnston, C. S. 1969. The ecological distribution and primary production of macro- phytic marine algae in the Eastern Canaries. Int. Rev. Ges. Hydrobiol. 54: 473–490.CrossRefGoogle Scholar
  21. Kanwisher, J. W. 1966. Photosynthesis and respiration in some seaweeds. InSome Contemporary Studies in Marine Science, H. Barnes, ed., pp. 407–420. London: Allen and Unwin.Google Scholar
  22. ——, and S. A. Wainwright. 1967. Oxygen balance in some reef corals. Biol. Bull. 133:378–390.CrossRefGoogle Scholar
  23. Karo, H. A. 1956. World coastline measurements. Int. Hydrograph. Rev. 33:131–140.Google Scholar
  24. Koblentz-Mishke, O. J., V. V. Volkovinsky, and J. G. Kabanova. 1970. Plankton primary production of the world ocean. In Scientific Exploration of the South Pacific, W. S. Wooster, ed., pp. 183–193. Washington, D.C.: National Academy of Science.Google Scholar
  25. McAllister, D. C. 1970. Zooplankton rations, phytoplankton mortality and the estimation of marine production. In Marine Food Chains, J. H. Steele, ed., pp. 419–457. Berkeley: Univ. of California.Google Scholar
  26. Maclsaac, J. J., and R. C. Dugdale. 1969. The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton. Deep-Sea Res. 16:45–58.Google Scholar
  27. Mann, K. H. 1972. Ecological energetics of the sea-weed zone in a marine bay on the Atlantic coast of Canada. II. Productivity of the seaweeds.Marine Biol. 14:199–209.Google Scholar
  28. Mann, K. H. 1973. Seaweeds: Their productivity and strategy for growth.Science 182:975–981.PubMedCrossRefGoogle Scholar
  29. Marsh, J. A. 1970. Primary productivity of reef-building calcareous red algae. Ecology 51:255–263.CrossRefGoogle Scholar
  30. Marshall, N., D. M. Skauen, H. C. Lampe, and C. A. Oviatt. 1973. Primary production of benthic microflora. Monographs on Oceanographic Methodology, No. 3, pp. 37–44. Paris: UNESCO.Google Scholar
  31. Provasoli, L. 1963. Organic regulation of phytoplankton fertility. In The Sea, M. N. Hill, ed., Vol. 2, pp. 165–219. New York: Wiley (Interscience).Google Scholar
  32. ——, J. J. A. McLaughlin, and M. R. Droop. 1957. The development of artificial media for marine algae. Arch. Mikrobiol. 25:392–428.PubMedCrossRefGoogle Scholar
  33. Qasim, S. Z., and P. M. A. Bhattathiri. 1971. Primary production of a sea grass bed on Kavaratti Atoll (Laccadives). Hydrobiologia 38:29–38.CrossRefGoogle Scholar
  34. Rabinowitch, E. I. 1945. Photosynthesis. Vol. I. New York: Wiley (Interscience).Google Scholar
  35. Redfield, A. C., B. H. Ketchum, and F. A. Richards. 1963. The influence of organisms on the composition of sea water. In The Sea, M. N. Hill, ed., Vol. 2, pp. 76–77. New York: Wiley (Interscience).Google Scholar
  36. Russell-Hunter, W. D. 1970. Aquatic Productivity, 306 pp. London: Macmillan.Google Scholar
  37. Ryther, J. H. 1956. Interrelation between photosynthesis and respiration in the marine flagellate, Dunalielle euchlora. Nature (London) 178:861–862.CrossRefGoogle Scholar
  38. ——. 1959. Potential productivity of the sea. Science 130:602–608.PubMedCrossRefGoogle Scholar
  39. ——. 1963. Geographic variations in productivity. In The Sea, M. N. Hill, ed., Vol. 2, pp. 347–380. New York: Wiley (Interscience).Google Scholar
  40. ——. 1969. Photosynthesis and fish production in the sea. Science 166:72–76.PubMedCrossRefGoogle Scholar
  41. ——, and W. M. Dunstan. 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science 171:1008–1013.PubMedCrossRefGoogle Scholar
  42. Sieburth, J. M., and A. Jensen. 1969. Studies on algal substances in the sea. II. The formation of gelbstoff by exudates of Phaeophyta. J. Exp. Marine Biol. Ecol. 3:275–289.CrossRefGoogle Scholar
  43. Smayda, T. J. 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Marine Biol. Annu. Rev. 8:353–414.Google Scholar
  44. Steele, J. H. 1969. Notes on some theoretical problems in production ecology. In Primary Productivity in Aquatic Environments, C. R. Goldman, ed., pp. 383–398. Los Angeles: Univ. of California Press.Google Scholar
  45. —— and I. E. Baird. 1968. Production ecology of a sandy beach. Limnol. Oceanogr. 13:14–25.Google Scholar
  46. Steemann Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Perm. Int. Explor. Mer. 18:117–140.Google Scholar
  47. ——, and V. K. Hansen. 1959. Measurements with the carbon-14 technique of the respiration rates in natural populations of phytoplankton. Deep-Sea Res. 5:222–233.Google Scholar
  48. ——, and E. Aabye Jensen. 1957. Primary oceanic production. The autotrophic production of organic matter in the oceans. Galathea Rep. 1:49–135.Google Scholar
  49. Strickland, J. D. H. 1965. Production of organic matter in the primary stages of the marine food chain. In Chemical Oceanography, J. P. Riley and G. Skirrow, eds., Vol. 1, pp. 477–610. New York: Academic Press.Google Scholar
  50. ——, and T. R. Parsons. 1965. A manual of seawater analysis. Fish. Res. Bd. Can. No. 125.Google Scholar
  51. Thomas, J. P. 1971. Release of dissolved organic matter for natural populations of marine phytoplankton. Marine Biol. 11:311–323.CrossRefGoogle Scholar
  52. Vishniac, W. 1971. Limits of microbial productivity in the ocean. InMicrobes and Biological Productivity, D. E. Hughes and A. H. Rose, eds., Symp. Soc. Gen. Microbiol 21:355–366.Google Scholar
  53. Wassink, K. E. C. 1959. Efficiency of light energy conversion in plant growth.Plant Physiol. 34:356–361.PubMedCrossRefGoogle Scholar
  54. Wassman, E. R., and J. Ramus. 1973. Primary production measurements for the green seaweed Codium fragile in Long Island Sound. Marine Biol. 21:289–298.CrossRefGoogle Scholar
  55. Westlake, D. F. 1963. Comparisons of plant productivity. Biol. Rev. 38:385–425.CrossRefGoogle Scholar
  56. Woodwell, G. M., P. H. Rich, and C. A. S. Hall. 1973. Carbon in estuaries. In Carbon and the Biosphere, G. M. Woodwell and E. V. Pecan, eds. Brookhaven Symp. Biol. 24:221–240. Springfield, Va.: Tech. Inf. Center and Atomic Energy Comm. (CONF-720510).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • John S. Bunt

There are no affiliations available

Personalised recommendations