Advertisement

Methods of Assessing Aquatic Primary Productivity

  • Charles A. S. Hall
  • Russell Moll
Part of the Ecological Studies book series (ECOLSTUD, volume 14)

Abstract

This chapter is a concise description and comparison of the most commonly used methods in measuring “primary productivity” in water. The reader may also wish to consult reviews by Doty (1961); Goldman (1969); Vollenweider (1969b); Wrobel (1972); and Wetzel (1973).

Keywords

Primary productivity Methods aquatic ecosystems ecology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, H. L. 1971. Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol Monogr. 41:97–127.CrossRefGoogle Scholar
  2. American Public Health Association (APHA). 1971. Standard methods for the examination of water and waste water, 874 pp. Washington, D.C.Google Scholar
  3. Aruga, Y. 1966. Ecological studies of photosynthesis and matter production of phyto- plankton. III. Relationship between chlorophyll amount in water and primary productivity. Bot. Mag. Tokyo 79:20–27.Google Scholar
  4. ———, and M. Monsi. 1963. Chlorophyll amount as an indicator of matter productivity in bio-communities. Plant Cell Physiol. 4:29–39.Google Scholar
  5. Bannister, T. T. 1974. Production equations in terms of chlorophyll concentration, quantum yield and upper limit to production. Limnol. Oceanogr. 19:1–12.CrossRefGoogle Scholar
  6. Bender, M. E., and R. A. Jordan. 1970. Plastic enclosure versus open lake productivity measurements. Trans. Amer. Fish. Soc. 99:607–610.CrossRefGoogle Scholar
  7. Beyers, R. J., J. Larimer, H. T. Odum, R. B. Parker, and N. E. Armstrong. 1963. Instructions for the determination of changes in carbon dioxide concentrations from changes in pH. Publ. Inst. Marine Sci. Univ. Tex. 9:454–489.Google Scholar
  8. Blum, J. L. 1957. An ecological study of the algae of the Saline River, Michigan. Hydrobiologia 9:361–408.CrossRefGoogle Scholar
  9. Brody, S. 1945. Bioenergetics and Growth. 1023 pp. New York: Reinhold.Google Scholar
  10. Brylinsky, M., and K. H. Mann. 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnol. Oceanogr. 18:1–14.CrossRefGoogle Scholar
  11. Carpenter, J. H. 1965a. The accuracy of the Winkler method for dissolved oxygen analysis. Limnol. Oceanogr. 10:135–140.CrossRefGoogle Scholar
  12. ———. 1965b. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10:141–143.CrossRefGoogle Scholar
  13. ———. 1966. New measurements of oxygen solubility in pure and natural water. Limnol. Oceanogr. 11:264–277.CrossRefGoogle Scholar
  14. Cassie, R. M. 1961. Statistical and sampling problems in primary production. In Proc. Conf. Primary Productivity Measurement, Marine and Freshwater, Hawaii, 1961, M. S. Doty, ed., pp. 163–171. Washington, D.C.: U.S. Atomic Energy Commission, Div. Technical Information.Google Scholar
  15. Churchill, M. A., R. A. Buckingham, and H. L. Elmore. 1962. The prediction of stream reaeration rates, 98 pp. Chattanooga, Tennessee: Tennessee Valley Authority, Div. of Health and Safety, Environmental Hygiene Branch.Google Scholar
  16. Clymo, R. S. 1970. The growth ofSphagnum: Methods of measurement. J. Ecol. 58: 13–49.CrossRefGoogle Scholar
  17. Copeland, B. J., and W. R. Duffer. 1964. The use of a clear plastic dome to measure diffusion of natural waters. Limnol. Oceanogr. 9:494–495.CrossRefGoogle Scholar
  18. Cummins, K. W., and J. C. Wuycheck. 1971. Caloric equivalents for investigations in ecological energetics. Mitt. Int. Ver. Limnol. 18:1–158.Google Scholar
  19. Czaplewski, R. L., and M. Parker. 1973. Use of a BOD oxygen probe for estimating primary productivity. Limnol. Oceanogr. 18:152–154.CrossRefGoogle Scholar
  20. Dally, R. J., C. B. J. Gray, and S. R. Brown. 1973. A quantitative, semiroutine method for determining algal and sedimentary chlorophyll derivatives. J. Fish. Res. Bd. Can. 30:345–356.CrossRefGoogle Scholar
  21. Day, J. W., W. G. Smith, P. R. Wagner, and W. C. Stowe. 1973. Community structure and carbon budget of a salt marsh and shallow bay estuarine system in Louisiana, 79 pp. Baton Rouge, Louisiana: Louisiana State Univ.Google Scholar
  22. Di Toro, D. M., D. J. O’Connor, and R. V. Thomann. 1971. A dynamic model of phytoplankton populations in the Sacramento-San Joaquin delta. Advan. Chem. Ser. 106:131–180.CrossRefGoogle Scholar
  23. Doty, M. S. (ed.) Proc. Conf. Primary Productivity Measurement, Marine and Freshwater, Hawaii, 1961. Washington, D.C.: U.S. Atomic Energy Commission, Div. Technical Information.Google Scholar
  24. Efford, I. E. 1968. Winkler titration for oxygen, (mimeogr.) Vancouver, British Columbia: Institute of Animal Ecology, Univ. of British Columbia.Google Scholar
  25. Emerson, S., W. S. Broecker, and D. W. Schindler. 1973. Gas-exchange rates in a small lake as determined by the radon method. J. Fish. Res. Bd. Can 30:1475–1484.CrossRefGoogle Scholar
  26. Erti, M. 1971. A quantitative method of sampling periphyton from rough substrates. Limnol. Oceanogr. 16:576–577.CrossRefGoogle Scholar
  27. Fee, E. J. 1971. Digital computer programs for estimating primary production, integrated over depth and time, in water bodies. Special Rep. 14, Center for Great Lakes Studies, 43 pp. Milwaukee, Wisconsin: Univ. of Wisconsin.Google Scholar
  28. ———. 1973a. A numerical model for determining integral primary production and its application to Lake Michigan. J. Fish. Res. Bd. Can. 30:1447–1468.CrossRefGoogle Scholar
  29. ———. 1973b. Modelling primary production in water bodies: A numerical approach that allows vertical inhomogeneities. J. Fish. Res. Bd. Can. 30:1469–1473.CrossRefGoogle Scholar
  30. Gaarder, T., and H. Gran. 1927. Investigations of the production of plankton in the Oslo Fjord. Rapp. Cons. Explor. Mer 42:1–48.Google Scholar
  31. Goldman, C. R. 1967. Integration of field and laboratory experiments in productivity studies. Estuaries, G. H. Lauff, ed., Special AAAS Pubi., 83:346–352.Google Scholar
  32. ———. 1968. Aquatic primary production. Am. Zool. 8:31–42.Google Scholar
  33. ———. (ed.) 1969. Primary Productivity in Aquatic Environments, 464 pp. Berkeley, California: Univ. of California Press.Google Scholar
  34. Gorham, E., and W. H. Pearsall. 1956. Production ecology. III. Shoot production in Phragmites in relation to habitat. Oikos 7:206–214.CrossRefGoogle Scholar
  35. Hall, C. A. S. 1972. Migration and metabolism in a temperate stream ecosystem. Ecology 53:585–604.CrossRefGoogle Scholar
  36. Haney, J. F. 1971. An in situ method for the measurement of zooplankton grazing rates. Limnol. Oceanogr. 16:970–977.CrossRefGoogle Scholar
  37. Hansmann, E. W., C. B. Lane and J. D. Hall. 1971. A direct method of measuring benthic primary production in streams. Limnol. Oceanogr. 16:822–826.CrossRefGoogle Scholar
  38. Hobbie, J. E., O. Holm-Hansen, T. T. Packard, L. R. Pomeroy, R. W. Sheldon, J. P. Thomas, and W. J. Wiebe. 1972. A study of the distribution and activity of microorganisms in ocean water. Limnol. Oceanogr. 17:544–555.CrossRefGoogle Scholar
  39. Jannasch, H. W., and P. H. Pritchard. 1972. The role of inert particulate matter in the activity of aquatic micro-organisms. Mem. Inst. Ital. Idrobiol. 29 (Suppl.): 289–308.Google Scholar
  40. Jitts, H. R. 1961. The standardization and comparison of measurements of primary production by the carbon-14 technique. In Proc. Conf. Primary Productivity Measurement, Marine and Freshwater, Hawaii, 1961, M. S. Doty, ed. pp. 114–120, Washington, D.C.: U.S. Atomic Energy Commission, Div. of Technical Information.Google Scholar
  41. Juliano, D. W. 1969. Reaeration measurements in an estuary.J. Sanit. Eng. Div., ASCE 95 (SA6; Proc. Paper 6987): 1165–1178.Google Scholar
  42. Kaul, V., and K. K. Vass. 1972. Production studies of some macrophytes of Srinagar lakes. In Productivity Problems of Freshwaters: Proc. IBP-UNESCO Symp., Z. Kajak and A. Hillbricht-Ilkowska, eds. pp. 725–731. Warsaw and Krakow: Polish Scientific Publ.Google Scholar
  43. Kelly, M. G., G. M. Hornberger, and B. J. Cosby. 1974. Continuous automated measurement of rates of photosynthesis and respiration in an undisturbed river community. Limnol Oceanogr. 19:305–312.CrossRefGoogle Scholar
  44. Kelly, R. S., and W. Spofford. 1975. Application of an ecosystem model to water quality management: The Delaware estuary. In Models as Ecological Tools: Theory and Case History, C. Hall and J. Day, eds. New York: Wiley (Inter- science). (In press.) Google Scholar
  45. Lehman, J. T., D. B. Botkin, and G. E. Likens. 1975. The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnol. Oceanogr. (In press.) Google Scholar
  46. Levins, R. 1966. Strategy of model building in population biology. Am. Sci. 54: 420–431.Google Scholar
  47. Lorenzen, C. S. 1966. A method for the continuous measurement of in vivo chlorophyll concentrations. Deep Sea Res. 13:223–227.Google Scholar
  48. Mahler, H. R., and E. H. Cordes. 1966. Biological Chemistry. New York: Harper and Row.Google Scholar
  49. Mann, K. H. 1972. Ecological energetics of the seaweed zone in a marine bay on the Atlantic Coast of Canada. II. Productivity of the seaweeds. Marine Biol. 14: 199–209.Google Scholar
  50. ———, R. H. Britton, A. Kowalczewski, T. J. Lack, C. P. Mathews, and I. McDonald. 1972. Productivity and energy flow at all trophic levels in the River Thames, England. In Productivity Problems of Freshwaters: Proc. IBP- UNESCO Symp., Z. Kajak and A. Hillbricht-Ilkowska, eds., pp. 579–596. Warsaw-Krakow: Polish Scientific Publ.Google Scholar
  51. Manny, B. A., and C. A. S. Hall. 1969. Diurnal changes in stratification and dissolved oxygen in the surface waters of Lake Michigan. Conf. Great Lakes Res. Proc. Int. Ass. Great Lakes Res. 12:622–634.Google Scholar
  52. Margalef, D. R. 1949. A new limnological method for the investigation of thin- layered epilithic communities. Hydrobiologia 1:215–216.CrossRefGoogle Scholar
  53. ———. 1968. Perspectives in Ecological Theory, 111 pp. Chicago, Illinois: Univ. of Chicago Press.Google Scholar
  54. Mathews, C. P., and D. F. Westlake. 1969. Estimation of production by populations of higher plants subject to high mortality. Oikos 20:156–160.CrossRefGoogle Scholar
  55. McAlice, B. J. 1971. Phytoplankton sampling with the Sedgwick-Rafter cell. Limnol. Oceanogr. 16:19–28.CrossRefGoogle Scholar
  56. McAllister, C. D., T. R. Parsons, K. Stephens, and J. D. H. Strickland. 1961. Measurements of primary production in coastal sea water using a large-volume plastic sphere. Limnol. Oceanogr. 6:237–258.CrossRefGoogle Scholar
  57. Morris, I., C. M. Yentsch, and C. S. Yentsch. 1971. Relationship between light carbon dioxide fixation and dark carbon dioxide fixation by marine algae. Limnol. Oceanogr. 16:854–858.CrossRefGoogle Scholar
  58. Nalewajko, C., and D. R. S. Lean. 1972. Retention of dissolved compounds by membrane filters as an error in the 14C method of primary production measurement. J. Phycol. 8:37–43.Google Scholar
  59. Nelson, D. J., N. R. Kevern, J. L. Wilhm, and N. A. Griffith. 1969. Estimates of periphyton mass and stream bottom area using phosphorus-32. Water Res. 3:367–373.CrossRefGoogle Scholar
  60. Nixon, S., and J. Kremer. 1975. Narragansett Bay—The development of a composite simulation model for a New England estuary. In Models as Ecological Tools: Theory and Case Histories, C. Hall and J. Day, eds. New York: Wiley (Inter-science). (In press.) Google Scholar
  61. Nygaard, G. 1968. On the significance of the carrier carbon dioxide in determinations of the primary production in soft-water lakes by the radiocarbon technique. Mitt. Int. Ver. Limnol 14:111–121.Google Scholar
  62. O’Connor, J. S., and B. C. Patten. 1968. Mathematical models of plankton productivity. Proc. Reservoir Fishery Resources Symp., April 5–7, 1967, pp. 207–228. Athens, Georgia: Univ. Georgia.Google Scholar
  63. Odum, E. P. 1971. Principles of Ecology, 514 pp. Philadelphia, Pennsylvania: Saunders.Google Scholar
  64. Odum, H. T. 1956. Primary production of flowing waters. Limnol. Oceanogr. 2:85–97.CrossRefGoogle Scholar
  65. ———. The energetics of world food production. In The World Food Problem. Vol. 3:55–94. Report of the president’s science advisory committee panel on world food supply. White House, Washington, D.C.Google Scholar
  66. ———, and C. M. Hoskin. 1958. Comparative studies on the metabolism of marine waters. Publ. Inst. Marine Sci. Univ. Tex. 5:159–170.Google Scholar
  67. ———, and F. R. Wilson. 1962. Further studies on reaeration and metabolism of Texas bays, 1958–1960. Publ Inst. Marine Sci. Univ. Tex. 8:159–170.Google Scholar
  68. ———, W. McConnell, and W. Abbott. 1958. The chlorophyll “A” of communities. Publ Inst. Marine Sci. Univ. Tex. 5:65–96.Google Scholar
  69. ———, S. Nixon, and L. Di Salvo. 1969. Adaptations for photoregenerative cycling. In The Structure and Function of Fresh Water Microbial Systems, J. Cairnes, ed., pp. 1–29. Blacksburg, Virginia: Virginia Polytechnic Institute.Google Scholar
  70. Olinger, L. W. 1968. The Effect of Induced Turbulence on the Growth of Algae, 58 pp. Atlanta, Georgia: Georgia Institute of Technology.Google Scholar
  71. Owens, M. 1969. Some factors involved in the use of dissolved-oxygen distributions in streams to determine productivity. In Primary Productivity in Aquatic Environments, C. R. Goldman, ed., pp. 209–224. Berkeley, California: Univ. of California Press.Google Scholar
  72. Patten, B. C. 1968. Mathematical models of plankton production. Int. Revue ges. Hydrobiol 53:357–408.CrossRefGoogle Scholar
  73. Patterson, M. S., and R. C. Greene. 1965. Measurement of low energy beta-emitters in aqueous solution by liquid scintillation counting of emulsions. Anal Chem. 37:854–857.PubMedCrossRefGoogle Scholar
  74. Pomeroy, L. R. 1961. Isotopic and other techniques for measuring benthic primary production. In Proc. Conf. Primary Productivity Measurement, Marine and Freshwater, Hawaii, 1961, M. S. Doty, ed., pp. 97–102. Washington, D.C.: U.S. Atomic Energy Commission, Div. of Technical Information.Google Scholar
  75. Pugh, P. R. 1973. An evaluation of liquid scintillation counting techniques for use in aquatic primary production studies.Limnol. Oceanogr. 18:310–318.CrossRefGoogle Scholar
  76. Rodhe, W., R. Vollenweider, and A. Nauwerk. 1958. The primary production and standing crop of phytoplankton. In Perspectives in Marine Biology, A. A. Buzzati-Traverso, ed., pp. 299–322. Berkeley, California: Univ. of California Press.Google Scholar
  77. Ruttner, F. 1960. Fundamentals of Limnology, 295 pp. Toronto: Univ. of Toronto Press.Google Scholar
  78. Ryther, J. H. 1956. Photosynthesis in the ocean as a function of light intensity. Limnol Oceanogr. 1:61–70.CrossRefGoogle Scholar
  79. ———, and C. S. Yentsch. 1957. The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol. Oceanogr. 2:281–286.Google Scholar
  80. Saunders, G. W., Jr. 1972. The kinetics of extracellular release of soluble organic matter by plankton. Verhandl. Int. Ver. Limnol. 18:140–146.Google Scholar
  81. ———., F. B. Trama, and R. W. Bachmann. 1962. Evaluation of a modified C-14 technique for shipboard estimates of photosynthesis in large lakes. Univ. Michigan, Great Lakes Res. Div. Publ. 8:1–61.Google Scholar
  82. Schindler, D. W., and E. J. Fee. 1973. Diurnal variation of dissolved inorganic carbon and its use in estimating primary production and CO2 invasion in lake 227. J. Fish. Res. Bd. Can. 30:1501–1510.CrossRefGoogle Scholar
  83. ———, and S. K. Holmgren. 1971. Primary production and phytoplankton in the Fisheries Research Board Experimental Lakes Area, northwestern Ontario, and and other low-carbonate waters, and a liquid scintillation method for determining 14C activity in photosynthesis. J Fish. Res. Bd. Can. 28: 189–202.CrossRefGoogle Scholar
  84. ———, R. V. Schmidt, and R. A. Reid. 1972. Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method. J. Fish. Res. Bd. Can. 29:1627–1631.CrossRefGoogle Scholar
  85. ———, V. E. Frost, and R. V. Schmidt. 1973a. Production of epilithiphyton in two lakes of the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Bd. Can. 30:1511–1524.CrossRefGoogle Scholar
  86. Schindler, D. W., H. Kling, R. V. Schmidt, J. Prokopowich, V. E. Frost, R. A. Reid, and M. Capel. 1973b. Eutrophication of lake 227 by addition of phosphate and nitrate: The second, third and fourth years of enrichment, 1970, 1971, and 1972. J. Fish. Res. Bd. Can. 30:1415–1440.CrossRefGoogle Scholar
  87. Sheldon, R. W., W. H. Sutcliffe, and A. Prakish. 1973. The production of particles in the surface waters of the ocean with particular reference to the Sargasso Sea. Limnol. Oceanogr. 18:719–733.CrossRefGoogle Scholar
  88. Small, L. F. 1963. Effect of wind on the distribution of chlorophyll a in Clear Lake, Iowa. Limnol. Oceanogr. 8:426–432.CrossRefGoogle Scholar
  89. Sollins, P. 1969. Measurements and simulation of oxygeh flows and storage in a laboratory blue-green algal mat ecosystem. Masters thesis, Chapel Hill, North Carolina: Univ. of North Carolina.Google Scholar
  90. Stainton, M. P. 1973. A syringe gas-stripping procedure for gas-chromatographic determination of dissolved inorganic and organic carbon in fresh water and carbonates in sediments. J. Fish Res. Bd. Can. 30:1441–1445.CrossRefGoogle Scholar
  91. Steemann Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Perm. Int. Explor. Mer. 18:117–140.Google Scholar
  92. ———. 1963. Fertility of the oceans: Productivity, definition and measurement. In The Sea, Vol. 2, M. N. Hill, ed., pp. 129–164. New York: Wiley.Google Scholar
  93. ———, and E. Aabye Jensen. 1957. Primary oceanic production. The autotrophic production of organic matter in the oceans. Galathea Rep. 1:49–136.Google Scholar
  94. Stephens, G. C., and B. B. North. 1971. Extrusion of carbon accompanying uptake of amino acids by marine phytoplankters. Limnol. Oceanogr. 16:752–757.CrossRefGoogle Scholar
  95. Strickland, J. D. H., and T. R. Parsons. 1972. A practical handbook of seawater analysis.J. Fish. Res. Bd. Can. 167: 311 pp.Google Scholar
  96. Stull, E. A., E. deAmezaga, and C. R. Goldman. 1972. The contribution of individual species of algae to primary productivity of Castle Lake, California. Verhandl. Int. Ver. Limnol. 18:1776–1783.Google Scholar
  97. Talling, J. F. 1957. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation.New Phytol. 56:1–132.CrossRefGoogle Scholar
  98. ———, and D. Driver. 1961. Some problems in the estimation of chlorophyll- in phytoplankton. In Proc. Conf. Primary Productivity Measurement, Marine and Freshwater, Hawaii, 1961, M. S. Doty, ed., pp. 142–146. Washington, D.C.: U.S. Atomic Energy Commission, Div. Technical Information.Google Scholar
  99. Thomann, R. V. 1971. Systems Analysis and Water Quality Management, 286 pp. New York: Environmental Research and Applications.Google Scholar
  100. Thomas, W. H. 1961. Physiological factors affecting the interpretation of phytoplankton production measurements. In Proc. Conf. Primary Productivity Measurement, Marine and Freshwater, Hawaii, 1961, M. S. Doty, ed., pp. 147–162. Washington, D.C.: U.S. Atomic Energy Commission, Div. of Technical Information.Google Scholar
  101. Vollenweider, R. A. 1969a. Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. In Primary Production in Aquatic Environments, C. Goldman, ed., pp. 428–457. Berkeley, California: Univ. of California Press.Google Scholar
  102. ———. 1969b. Methods for measuring production rates. In A Manual on Methods for Measuring Primary Production in Aquatic Environments, R. A. Vollenweider, ed. International Biological Programme Handbook No. 12, 41–127. Oxford and Edinburgh: Blackwell Scientific Publ.Google Scholar
  103. Wallen, D. G., and G. H. Green, 1971. The nature of the photosynthate in natural phytoplankton populations in relation to light quality. J. Marine Biol. 10:157–168.CrossRefGoogle Scholar
  104. Ward, F. J., and M. Nakanishi. 1971. A comparison of Geiger-Mueller and liquid scintillation counting methods in estimating primary productivity. Limnol. Oceanogr. 16:560–563.CrossRefGoogle Scholar
  105. Welch, H. C. 1968. Use of modified diurnal curves for the measurement of metabolism in standing water. Limnol. Oceanogr. 13:679–687.CrossRefGoogle Scholar
  106. Westlake, D. F. 1967. Some effects of low-velocity currents on the metabolism of aquatic macrophytes. J. Exp. Bot. 18:187–205.CrossRefGoogle Scholar
  107. Wetzel, R. G. 1964a. A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake. Int. Rev. Ges. Hydrobiol. 49:1–61.CrossRefGoogle Scholar
  108. ———. 1964b. Primary productivity of aquatic macrophytes. Verhandl. Int. Ver.Limnol. 15:426–436.Google Scholar
  109. ———. 1973. Primary production. In River Ecology, M. Owens, and B. Whitten, eds. Oxford: Blackwell Scientific Publ.Google Scholar
  110. ———, and A. Otsuki. 1975. Allochthonous organic carbon of a Marl Lake. Arch. Hydrobiol. (In press.) Google Scholar
  111. Williams, R. B., and M. B. Murdock. 1966. Phytoplankton production and chlorophyll concentration in the Beaufort Channel, North Carolina. Limnol. Oceanogr. 11: 73–82.CrossRefGoogle Scholar
  112. Wright, J. C. 1959. Limonology of Canyon Ferry Reservoir. II. Phytoplankton standing crop and primary production. Limnol. Oceanogr. 4:235–245.CrossRefGoogle Scholar
  113. Wrobel, S. 1972. Comparison of some methods of determining the primary production of phytoplankton in ponds. In Productivity Problems of Freshwaters: Proc. IBP-UNESCO Symp Z. Kajak, and A. Hillbricht-Ilkowska, eds., pp. 733–737. Warsaw and Krakow: Polish Scientific Publ.Google Scholar
  114. Yentsch, C. 1967. The relationship between chlorophyll and photosynthetic carbon production with reference to the measurement of decomposition products of chloroplastic pigments. In Primary Production in Aquatic Environments, C. R. Goldman, ed., pp. 323–346. Berkeley, California: Univ. of California Press.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Charles A. S. Hall
  • Russell Moll

There are no affiliations available

Personalised recommendations