Some Prospects beyond Production Measurement

  • Helmut Lieth
Part of the Ecological Studies book series (ECOLSTUD, volume 14)


We have been asked what insight into an ecosystem can be gained if one knows its dry matter production. In some discussions of primary productivity I have heard such figures likened to the relatively insignificant house numbers along streets. The comparison is inept in at least one fundamental respect: the primary productivity of an ecosystem is its most essential resource base and the working income on which the development of community structure and function depends. Deeper insight may be gained from the study of productivity when that productivity is viewed as an approach to analysis of the structure and composition of communities. With the help of a few examples, this chapter investigates the expanded perspective one may develop by partitioning productivity into four aspects: stratal productivity, productivity of individual species, production and diversity, and the chemical composition of productivity.


Primary productivity species diversity stratal productivity chemical differences ecosystems trophic levels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adjanohoun, E. J. 1962. Étude phytosociologique des savanes de Basse Côte d’Ivoire (savanes lagunaires), Table II. Vegetatio 11:1–38.CrossRefGoogle Scholar
  2. Advanced Research Projects Agency (ARPA). U.S. Department of Defense, Cooperative Research Programme No. 27, Tropical Environmental Data (trend), Table 7, p. 42. Bangkok: ASRCT.Google Scholar
  3. Atlas of Nutritional Data on United States and Canadian Feeds. 1971. Washington, D.C.: National Academy of Science.Google Scholar
  4. Auclair, A. N., and F. G. Goff. 1971. Diversity relations of upland forests in the western Great Lakes area. Amer. Nat. 105:459–528.CrossRefGoogle Scholar
  5. Birge, E. A., and C. Juday. 1922. The Inland Lakes of Wisconsin. The Plankton: I. Its Quantity and Chemical Composition. Wise. Geol. Nat. Hist. Serv. Bull. 64 Sci. Ser. 13:1–222.Google Scholar
  6. Blake, S. F., and A. C. Atwood. 1967. Geographical Guide to the Floras of the World, Part I. New York: Hafner.Google Scholar
  7. ———, and A. C. Atwood. 1961. Geographical Guide to the Floras of the World, Part II. (USDA Misc. Publ. No. 797.) Washington, D.C.: U.S. Government Printing Office.Google Scholar
  8. Borgstrom, Georg (ed.). 1962. Fish as Food, Vol. II:Nutrition, Sanitation and Utilization. New York: Academic Press.Google Scholar
  9. Boyd, C. E. 1970. Nutrient content of offal and small fish from some freshwater fish cultures. Trans. Amer. Fish. Soc. 99:809–811.CrossRefGoogle Scholar
  10. Bump, G. 1947. The Ruffed Grouse: Life History, Propagation, Management. New York State Conservation Dept.Google Scholar
  11. Cochrane, V. W. 1958. Physiology of Fungi, 524 pp. New York: Wiley.Google Scholar
  12. Cohen, J. E. 1968. Alternate derivations of a species-abundance relation. Amer. Nat. 102:165–172.CrossRefGoogle Scholar
  13. Connell, J. H., and E. Orias. 1964. The ecological regulation of species diversity. Amer. Nat. 98:399–414.CrossRefGoogle Scholar
  14. Dansereau, P. 1954. Studies on central Baffin vegetation, L. Bray Island, Table II. Vegetado 5–6:329–339.CrossRefGoogle Scholar
  15. Davis, A. 1970. Let’s Eat Right to Keep Fit. New York: New America Library.Google Scholar
  16. Fraenkel, G. S. 1959. The raison d’être of secondary plant substances. Science 129: 1466–1470.PubMedCrossRefGoogle Scholar
  17. French, C. E., S. A. Liscinsky, and D. R. Miller. 1957. Nutrient composition of earthworms. J. Wildlife Mgmt. 21:348.CrossRefGoogle Scholar
  18. Frodin, D. G. 1964. Guide to the Standard Floras of the World. 59 p. mimeo. Knoxville, Tennesee: Univ. of Tennessee.Google Scholar
  19. Good, R. 1964. Geographical Guide to the Floras of the World. London: Longmans.Google Scholar
  20. Heen, E., and R. Kreuzer. 1962. Fish in nutrition. Fishing News. Google Scholar
  21. Hegnauer, R. 1963. Chemotaxonomie der Pflanzen, Vol. 1. Basel: Birkhäuser.Google Scholar
  22. Hillis, W. E. 1962. Wood Extractives, pp. 332–333. New York: Academic Press.Google Scholar
  23. Holdridge, L. R. 1967. Life Zone Ecology, rev. ed. San Jose, California: Tropical Science Center.Google Scholar
  24. Jordan, W. H. 1912. The Feeding of Animals, 9th ed. New York: Macmillan.Google Scholar
  25. Kleiber, M. 1961. The Fire of Life. An Introduction to Animal Energetics, 454 pp. New York: Wiley.Google Scholar
  26. Kollmann, W. A. 1968. Principles of Wood Science and Technology, p. 56. New York: Springer-Verlag.Google Scholar
  27. Lemée, G. 1952. Contribution à la connaissance phytosociologique des confins Saharo- Marocains, Table III. Vegetatio 4:137–154.Google Scholar
  28. Lieth, H. 1953. Untersuchungen über die Bodenstruktur und andere vom Tritt abhängende Faktoren in den Rasengesseilschaften des Rheinisch-Bergischen Kreises. Ph.D. dissertation, Table III. Cologne: Univ. of Cologne.Google Scholar
  29. Loucks, O. L. 1970. Evolution of diversity, efficiency, and community stability. Amer. Zool. 10:17–25.Google Scholar
  30. MacArthur, R. H. 1960. On the relative abundance of species. Amer. Nat. 94:25–36.CrossRefGoogle Scholar
  31. ———. 1969. Patterns of communities in the tropics. Biol. J. Linn. Soc. London 1:19–30.CrossRefGoogle Scholar
  32. ———, and E. O. Wilson. 1967. The Theory of Island Biogeography, 203 pp. Princeton, New Jersey: Princeton Univ.Google Scholar
  33. McNaughton, S. J. 1966. Ecotypic function in the Typha community. Ecol. Monogr. 36:297–325.CrossRefGoogle Scholar
  34. Muller, C. H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torr. Bot. Club 93:332–351.CrossRefGoogle Scholar
  35. ———. 1970.The role of allelopathy in the evolution of vegetation. In Biochemical Coevolution, K. L. Chambers, ed. Corvallis: Oregon State Univ. Biology Colloq. 29:13–31.Google Scholar
  36. Mutch, R. W. 1970. Wildland fires and ecosystems—a hypothesis. Ecology 5:1046–1051.CrossRefGoogle Scholar
  37. Petrall, P. 1972. A comparative analysis of income (productivity) distribution in plant communities and human societies. In Papers on Productivity and Succession in Ecosystems, H. Lieth, ed., pp. 19–51. EDF Biome Memo Report 72–10.Google Scholar
  38. Pourriot, R., and L. Leborgne. 1970. Teneus en proteines, lipides, et glucides de zoo- planctons d’eau douce.Ann. Hydrobiol. 1 (2): 171–178.Google Scholar
  39. Reisigl, H., and H. Pitschmann. 1958–1959. Obere Grenzen von Flora und Vegetation in der Nivalstufe der Zentralen Ötzaler Alpen (Tirol), Table 14. Vegetatio 8:93–129.Google Scholar
  40. Risser, P. G. 1971. Composition of the primary producers on the Pawnee site. In The Grassland Ecosystem. A Synthesis Volume, N. French, ed. Fort Collins, Colorado: Range Science Dept., Colorado State Univ.Google Scholar
  41. Sanders, H. L. 1968. Marine benthic diversity: A comparative study. Amer. Nat. 102:243–282.CrossRefGoogle Scholar
  42. Seidel, K. 1955. Die Flechtbinse. In Die Binnengewässer, A. Thienemann, ed., Vol. 21, 216 pp. Stuttgart: Schweizerbart.Google Scholar
  43. Stiven, A. E. 1961. Food energy available for and required by the blue grouse chick. Ecology 42:547–553.CrossRefGoogle Scholar
  44. Van Balgooy, M. M. J. 1969. A study on the diversity of island floras. Blumea 17 1:139–178.Google Scholar
  45. Welch, P. S. 1953. Limnology, pp. 273–276; 301–304. New York: McGraw-Hill Book Co.Google Scholar
  46. Wenzel, H. F. J. 1970. The Chemical Technology of Wood, pp. 97–100. New York: Academic Press.Google Scholar
  47. Whigham, D. F. 1971. An ecological study of Uvularia perfoliata in the Blackwood Division of Duke Forest, North Carolina. Ph.D. dissertation. Chapel Hill, North Carolina: Univ. of North Carolina.Google Scholar
  48. Whittaker, R. H. 1965. Dominance and diversity in land plant communities. Science 147:250–260.PubMedCrossRefGoogle Scholar
  49. ———. 1966. Forest dimensions and production in the Great Smoky Mountains. Ecology 47:103–121.CrossRefGoogle Scholar
  50. ———. 1969. Evolution of diversity in plant communities. Brookhaven Symp. Biol. 22:178–196.PubMedGoogle Scholar
  51. ———. 1970a. Communities and Ecosystems, 162 pp. New York: Macmillan.Google Scholar
  52. ———. 1970b. Biochemical ecology of higher plants. In Chemical Ecology, E. Sondheimer and J. B. Simeone, eds., pp. 43–70. New York: Academic Press.Google Scholar
  53. ———. 1972. Evolution and measurement of species diversity. Taxon 21:213–251.CrossRefGoogle Scholar
  54. ———, and P. P. Feeny. 1971. Allelochemics: Chemical interactions between species. Science 171:757–770.PubMedCrossRefGoogle Scholar
  55. ———, and G. E. Likens. 1973. Carbon in the biota. In Carbon and the Biosphere, G. M. Woodwell and E. V. Pecan, eds. Brookhaven Symp. Biol 24:281–302.Google Scholar
  56. ———, and W. A. Niering 1975. Vegetation of the Santa Catalina Mountains, Arizona 5. Biomass, production, and diversity along the elevation gradient. Ecology (in press).Google Scholar
  57. Williams, C. B. 1943. Area and number of species.Nature (London) 152:264–267.CrossRefGoogle Scholar
  58. ———. 1964. Patterns in the Balance of Nature, 324 pp. London: Academic Press.Google Scholar
  59. Woodwell, G. M. 1967. Radiation and the patterns of nature. Science 156:461–470.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Helmut Lieth

There are no affiliations available

Personalised recommendations