Skip to main content

A Variational Principle, the Finite Element Method, and Optimal Structural Design for Given Deflection

  • Conference paper
Optimization in Structural Design

Abstract

General Remarks. The optimal design of continuous or pieeewise continuous structural systems can be approached along two avenues. On one hand the system can be discretized at the outset and a sequence of problems involving refined domains may be studied in an effort to extract an approximate optimal solution. On the other hand, the continuous nature of the problem may be recognized and optimality criteria for the continua sought directly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sheu, C. Y., Prager, W.: Recent Developments in Optimal Structural Design. Appl. Mech. Rev. 21, 1968.

    Google Scholar 

  2. Niordson, F. I., Pedersen, P.: A Review of Optimal Structural Design, DCAMM Report 31, Technical University of Denmark, September 1972.

    Google Scholar 

  3. Fiaceo, A. V., McCormick, G. P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley 1968.

    Google Scholar 

  4. Pontryagin, L. S., Eoltyanski, V. G., Gamkrelidze, R. V., Meshchenko, E. F.: The Mathematical Theory of Optimal Processes, (trans. by K. N. Trinogoff), Interscience 1962.

    MATH  Google Scholar 

  5. Bellman, R.: Dynamic Programming, Princeton Univ. Press 1957.

    MATH  Google Scholar 

  6. Smith, D. R.: Variational Methods in Optimization, Prentice-Hall 1974.

    MATH  Google Scholar 

  7. de Silva, B. M. E.: Application of Optimal Control Theory to Some Structural Optimization Problems, ASME Research 71-Vibr-66, Sept. 1971 (Presented at the Vibration Conference and the International Design Automation Conference, Toronto, Sept. 8–10, 1971).

    Google Scholar 

  8. Haug, E. J., Kirmser, P. G.: Minimum-Weight Design with Inequality Constraints on Stress and Deflection. J. Appl. Mech. 34 (1967).

    Google Scholar 

  9. Huang, N. C., Tang, H. T.: Minimum Weight Design of Elastic Sandwich Beams with Deflection Constraints. J. of Optimization Theory and Applications 4, No. 4 (1969).

    Google Scholar 

  10. Frauenthal, J. C.: Constrained Optimal Design of Circular Plates Against Buckling. J. Struc. Mech. 1 (1972).

    Google Scholar 

  11. Valentine, F. A.: The Problem of Lagrange with Differential Inequalities as Added Side Conditions, Contribution to the Calculus of Variations, 1933 – 1937, University of Chicago Press 1937.

    Google Scholar 

  12. Bolza, O.: Lectures on the Calculus of Variations, Dover 1961.

    MATH  Google Scholar 

  13. Bliss, G. A.: Lectures on the Calculus of Variations, University of Chicago Press 1946.

    MATH  Google Scholar 

  14. Cesari, L.: Optimization with Partial Differential Equations in Dieudonné-Rashevsky Form and Conjugate Problems, Report No. 14, US-AFOSR Research Project 942-65, University of Michigan, 1968.

    Google Scholar 

  15. Prager, W., Taylor, J. E.: Problems of Optimal Structural Design. J. Appl. Mech. 85 (1968).

    Google Scholar 

  16. Prager, W.: Optimality Criteria in Structural Design. Proc. Nat’l Acad. Sci. 61 (1968).

    Google Scholar 

  17. Masur, E. F.: Optimum Stiffness and Strength of Elastic Structures. Proc. ASCE 96, EM5 (1970).

    Google Scholar 

  18. Shield, R. T., Prager, W.: Optimal Structural Design for Given Deflection. ZAMP 21 (1970).

    Google Scholar 

  19. Shield, R. T.: Optimal Design of Structures through Variational Principles. Lecture Notes in Physics (21): Optimization and Stability Problems in Continuum Mechanics (Ed. P. R. C. Wang), Berlin, Heidelberg, New York: Springer-Verlag 1973.

    Google Scholar 

  20. Barnet, R. L.: Minimum-Weight Design of Beams for Deflection. Trans. ASCE 128, Part I (1963).

    Google Scholar 

  21. Tang, H. T.: Optimal Design of Elastic Structures, Ph. D. Dissertation, University of California, San Diego, 1971.

    Google Scholar 

  22. Huang, N. C.: On a Principle of Stationary Mutual Complementary Energy and its Application to Optimal Structural Design. ZAMP 22 (1971).

    Google Scholar 

  23. Prager, W.: Variational Principles of Linear Elastostatics for Discontinuous Displacements, Strains and Stress, Recent Progress in Applied Mechanics, The Folke-Odqvist Volume (Ed. B. Broberg, J. Hult and F. Niordson), Stockholm: Olmqvist & Wiksell 1967.

    Google Scholar 

  24. Nemat-Nasser, S.: General Variational Methods for Waves in Elastic Composites. J. Elasticity 2, No. 2 (1972).

    Google Scholar 

  25. Oden, J. T.: Finite Elements of Nonlinear Continua, New York: McGraw-Hill 1972.

    MATH  Google Scholar 

  26. Zienkiewicz, O. C., Cheung, Y. K.: The Finite Element Method in Structural and Continuum Mechanics, New York: McGraw-Hill 1967.

    MATH  Google Scholar 

  27. Pian, T. H. H., Tong, P.: Finite Element Methods in Continuum Mechanics. Advances in Applied Mechanics (Ed. Chia-Shun Yih), Vol. 12, Academic Press 1972.

    Google Scholar 

  28. Dixon, L. C. W.: Pontryagin’s Maximum Principle Applied to the Profile of a Beam. Aeronautical Journal of the Royal Aeronautical Society 71 (July 1967).

    Google Scholar 

  29. Dixon, L. C. W.: Further Comments on Pontryagin’s Maximum Principle Applied to the Profile of a Beam. Aeronautical Journal of the Royal Aeronautical Society 72 (June 1968).

    Google Scholar 

  30. Pistefano, N.: Dynamic Programming and the Optimum Design of Rotating Disks. J. Optimization Theory and Applications 10, No. 2 (1972).

    Google Scholar 

  31. Armand, J.-L.: Minimum-Mass Design of a Plate-Like Structure for Specified Fundamental Frequency. AIAA J. 9, No. 9 (1971).

    Google Scholar 

  32. Charrett, D. E., Rozvany, G. I. N.: Extensions of the Prager-Shield Theory of Optimal Plastic Design. Int. J. Nonlinear Mechanics 7 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag, Berlin/Heidelberg

About this paper

Cite this paper

Hegemier, G.A., Tang, H.T. (1975). A Variational Principle, the Finite Element Method, and Optimal Structural Design for Given Deflection. In: Sawczuk, A., Mróz, Z. (eds) Optimization in Structural Design. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80895-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80895-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80897-5

  • Online ISBN: 978-3-642-80895-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics