Optimal Force Transmission by Flexure — The Present State of Knowledge

  • G. I. N. Rozvany
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

The aim of this paper is to summarize recent developments in the field of optimal force transmission by flexure. The main topic is minimization of moment volume in transversely loaded plane systems.

Keywords

Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prager, W., Shield, R. T.: A General Theory of Optimal Plastic Design. J. appl. Meeh. Proc. ASME 34, No. 1, 184–186 (1967).CrossRefMATHGoogle Scholar
  2. 2.
    Rozvany, G. I. N.: Duality between Limit Analysis and Limit Optimal Design. J. Eng. Meeh. Div. ASCE 97, No. EM6, 1763–1768 (1971).Google Scholar
  3. 3.
    Rozvany, G. I. N.: Grillages of Maximum Strength and Maximum Stiffness. Int. J. Meeh. Sci. 14, No. 10, 651–666 (1972).CrossRefGoogle Scholar
  4. 4.
    Charrett, D. E., Rozvany, G. I. N.: Extension of the Prager-Shield Theory of Optimal Plastic Design. Int. J. Non-Linear Meeh. 7, No. 1, 51 – 64(1972).CrossRefMATHGoogle Scholar
  5. 5.
    Rozvany, G. I. N., Adidam, S. R.: Dual Formulation of Variational Problems in Optimal Design. J. Engng. for Ind. Trans. ASME 94, Ser. B, No. 2, 409–418 (1972).CrossRefGoogle Scholar
  6. 6.
    Masur, E. F.: Optimum Stiffness and Strength of Elastic Structures. J. Engng. Meeh. Div. Proc. ASCE 96, No. EM5, 621–640 (1970).Google Scholar
  7. 7.
    Morley, C. T.: The Minimum Reinforcement of Concrete Slabs. Int. J. meeh. Sci. 8, No. 4, 305–320 (1966).CrossRefGoogle Scholar
  8. 8.
    Mróz, Z.: Multi-Parameter Optimal Design of Plates and Shells. J. Struct. Meeh. 1, No. 3, 371–392 (1972).CrossRefGoogle Scholar
  9. 9.
    Save, M. A.: A Unified Formulation of the Theory of Optimal Plastic Design with Convex Cost Function. J. Struct. Mech. 1, No. 2, 267–276 (1972).CrossRefGoogle Scholar
  10. 10.
    Prager, W.: Optimization of Structural Design. J. Optimiz. Theory. Appl. (JOTA) 6, No. 1, 1–21 (1970).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Rozvany, G. I. N.: Basic Geometrical Properties of Optimal Force Transmission Fields. J. Struct. Mech. 2, No. 4, 259–264 (1973).CrossRefMathSciNetGoogle Scholar
  12. 12.
    Rozvany, G. I. N.: Optimal Topography of Force Transmission by Flexure. J. appl. Mech. Trans. ASME 40, No. 4, 983–987 (1973).CrossRefMathSciNetGoogle Scholar
  13. 13.
    Rozvany, G. I. N., Hill, R., Ganghadaraiah, C.: Grillages of Least Weight -Simply Supported Boundaries. Int. J. mech. Sci. 15, No. 8, 665–677 (1973).CrossRefGoogle Scholar
  14. 14.
    Rozvany, G. I. N., Adidam, S. R.: Rectangular Grillages of Least Weight. J. Engng. Mech. Div. ASCE 98, No. EM6, 1337–1352 (1972).Google Scholar
  15. 15.
    Rozvany, G. I. N.: Optimal Force Transmission by Flexure-Clamped Boundaries. J. Struct. Mech. 2, No. 1, 57–82 (1973).CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rozvany, G. I. N.: Optimal Design of Axisymmetric Slabs. Civ. Engng. Trans. Inst. Engrs. Aust. CE 10, No. 1, 111–118 (1968).MathSciNetGoogle Scholar
  17. 17.
    Prager, W.: Foulkes Mechanisms in Optimal Plastic Design for Alternative Loads. Int. J. Mech. Sci. 18, No. 11, 971–973 (1971).CrossRefGoogle Scholar
  18. 18.
    Nagtegaal, J. C., Prager, W.: Optimal Layout of a Truss for Alternative Loads. Int. J. Mech. Sci. 15, No. 7, 583–592 (1973).CrossRefGoogle Scholar
  19. 19.
    Nagtegaal, J. C.: A Superposition Principle in Optimal Plastic Design for Alternative Loads. Int. J. Solids and Structures 9, No. 12, 1465–1471 (1973).CrossRefMATHGoogle Scholar
  20. 20.
    Rozvany, G. I. N., Adidam, S. R.: Absolute Minimum Volume of Reinforcement in Slabs. J. Struct. Div. ASCE 98, No. ST5, 1217–1222 (1972).Google Scholar
  21. 21.
    Lowe, P. G., Melchers, R. E.: On the Theory of Optimal Constant Thickness Fibre-Reinforced Plates. Int. J. mech. Sci. 14, No. 5, 311–324 (1972).CrossRefGoogle Scholar
  22. 22.
    Melchers, R. E.: Ph. D. Thesis, Cambridge University, Nov. 1971.Google Scholar
  23. 23.
    Lowe, P. G., Melchers, R. E.: On the Theory of Optimal, Constant Thickness Fibre-reinforced Plates II. Int. J. mech. Sci. 15, No. 2, 157–170 (1973).CrossRefGoogle Scholar
  24. 24.
    Luenberger, D. G.: Optimization by Vector Space Methods, New York: Wiley 1969.MATHGoogle Scholar
  25. 25.
    Rozvany, G. I. N.: A Unified Theory of Optimal Moment Fields. J. Struct. Mech. 3, No. 2, 179–195 (1974).CrossRefGoogle Scholar
  26. 26.
    Watson, H. L.: M. Eng. Sci. Thesis, Monash University, July 1973.Google Scholar
  27. 27.
    Rozvany, G. I. N.: Practical Aspects of the Optimization of Reinforced Concrete Structures. Proc. Symp. Conc. Research. Inst. Engrs. Aust. Sydney, Sept. 1973, pp. 76–83.Google Scholar

Copyright information

© Springer-Verlag, Berlin/Heidelberg 1975

Authors and Affiliations

  • G. I. N. Rozvany
    • 1
  1. 1.Monash UniversityClaytonAustralia

Personalised recommendations