Skip to main content

Mathematical Models and Bifurcation Theory in Biology

  • Conference paper
Physics and Mathematics of the Nervous System

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 4))

  • 309 Accesses

Abstract

The mathematical description of any physical process begins with a repeatable experiment. A mathematical theory is then sought which duplicates the experimental results. Usually physical laws or principles are applied to the experimental system to obtain the form and structure of the mathematical model. In many applications, the parameters in the mathematical model are not precisely known, and must also be obtained from the experiment.

This research was supported by the Alexander von Humboldt Senior Scientist Program and carried out at the Institute for Information Sciences, University of Tübingen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FritzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Biological Engineering, ed. by H.P. Schwan, pp. 1–84. McGraw-Hill, New York, 1969.

    Google Scholar 

  2. Thorn, R.: Stabilité Structural et Morphogenésé, Benjamin, Reading, Mass., 1972.

    Google Scholar 

  3. Stakgold, I.: Branching of solutions of nonlinear equations, S.I.A.M. Rev. 13, 289–332 (1971) .

    MATH  MathSciNet  Google Scholar 

  4. Keller, J. and Antman, S.: Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin, Reading, Mass., 1969.

    MATH  Google Scholar 

  5. Zeeman, E.: Differential equations for the heart beat and nerve impulse. In: Towards a Theoretical Biology, vol. 4, ed. by C.H. Waddington, pp. 8–67. Edinburgh University Press, Edinburgh, 1973.

    Google Scholar 

  6. Sattinger, D.: Topics in Stability and Bifurcation, Lecture Notes in Mathematics No. 309, Springer Verlag, New York, 1973.

    MATH  Google Scholar 

  7. Frank-Kamenetzky, D.: Diffusion and Heart Exchange in Chemical Kinetics, Princeton University Press, Princeton, N.J., 1955.

    Google Scholar 

  8. Lemberg, H.L. and Rice, S.A.: A re-examination of the theory of phase transitions in crystalline heavy methane, Physica 63, 48–64 (1973) .

    Article  Google Scholar 

  9. Rubinstein, H.: The Stefan problem, Translations of Mathematical Monographs 27 (1971).

    Google Scholar 

  10. Gurel,O.: Bifurcations in nerve membrane dynamics, Intern. J. Neuro-science 5, 281–286 (1973).

    Article  Google Scholar 

  11. Landahl, H.D. and Licko, V.: On coupling between oscillators which model biological systems, Int. J. of Chronobiology 1 ,245–252 (1973).

    Google Scholar 

  12. Cronin, J.: Biomathematical model of aneurysm of the circle of Willis: a qualitative analysis of the differential equation of Austin, Mathematical Biosciences 16, 209–225 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  13. Cronin, J.: The Danziger-Elmergreen theory of periodic catatonic schizophrenia, Bull. Math. Biophysics 35., 689–707 (1973).

    MATH  MathSciNet  Google Scholar 

  14. Pimpley, G.: On Predator-Prey Equations Simulating an Immune Response, Lecture Notes in Mathematics No. 322, Springer Verlag, New York, 1973.

    Google Scholar 

  15. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems, J. Functional Anal. 7, 487–513 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  16. Mahler, H. and Cordes, E.: Biological Chemistry, Harper and Row, New York, 1966.

    Google Scholar 

  17. George, J. and Damle, P.S.: On the numerical solution of free boundary problems, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

George, J. (1974). Mathematical Models and Bifurcation Theory in Biology. In: Conrad, M., Güttinger, W., Dal Cin, M. (eds) Physics and Mathematics of the Nervous System. Lecture Notes in Biomathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80885-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80885-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07014-6

  • Online ISBN: 978-3-642-80885-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics