An Algorithmic Approach to Information Theory

  • Roland Heim
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 4)

Abstract

Classical probability theory is based on the well known axioms of Kolmogoroff. A characteristic difficulty of this measure-theoretic approach is the physical interpretation of probability: we can observe only the frequency of events and the order in which they occur, not however the probability in the axiomatic sense. Attempts to formulate a frequency theory of probability are quite old, but it was not until the fundamental work of C.P. Schnorr (1971) that there existed a complete canonical theory of probability and randomness based on the concept of an effective (that is, computable) procedure to detect possible regularities in a sequence of events.

Keywords

Entropy Prefix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ash, R.: Information theory. J. Wiley & Sons, New York, London, Sydney (1965)MATHGoogle Scholar
  2. Blum, M.: A machine-independent theory of complexity of recursive func-r tions, J. Assoc. Comp. Machin. 14, 322 – 3 36 (1967)CrossRefMATHGoogle Scholar
  3. Bremermann, H.: Complexity of automata, brains and behaviour, this volumeGoogle Scholar
  4. Daley, R.P.: Minimal-program complexity of sequences with restricted resources, Information and Control 23, 301 – 312 (1973a)CrossRefMATHMathSciNetGoogle Scholar
  5. Daley, R.P.: An example of information and computation resource trade-off J. Assoc. Comp. Machin. 20, 667 – 695 (1973b)MathSciNetGoogle Scholar
  6. Gallager, R.G.: Information theory and reliable communication. John Wiley and Sons Inc., New York, London, Sydney, Toronto (1968)MATHGoogle Scholar
  7. Hartmanis, J. and Hopcroft, J.E.: An overwiev of the theory of computational complexity, J. Assoc. Comp. Machin. 18, 444 – 475 (1971)CrossRefMATHMathSciNetGoogle Scholar
  8. Heim, R.: The algorithmic foundation of information theory, to appearGoogle Scholar
  9. Kolmogoroff, A.: Three approaches for defining the concept of information quantity, Information Transmission 1, 3 – 11 (1964)Google Scholar
  10. Martin-Löf, P.: The definition of random sequences, Inform. Control 6, 602 – 619 (1966)CrossRefGoogle Scholar
  11. Martin-Löf, P.: Complexity oscillations in binary sequences, Z. Wahrscheinlichkeitstheorie verw. Geb. 19, 225 – 230 (1971)CrossRefMATHGoogle Scholar
  12. Scnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit, Lecture Notes in Mathematics 218, Springer-Verlag Berlin, Heidelberg, New York (1971)Google Scholar
  13. Schnorr, C.P.: Process complexity and effective random tests, J. of Comp.and Syst. Sc., 4, 376 – 388 (1973)CrossRefMathSciNetGoogle Scholar
  14. Schnorr, C.P. and Stimm, H.: Endliche Automaten und Zufallsfolgen, Acta Informatica 1, 345 – 359 (1972)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • Roland Heim
    • 1
  1. 1.Institute for Information SciencesUniversity of TübingenFederal Republic of Germany

Personalised recommendations