Adequate Locomotion Strategies for an Abstract Organism in an Abstract Environment — A Relational Approach to Brain Function

  • O. E. Rössler
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 4)


The idea to be presented in the following — namely a relational approach to brain function — belongs to the class of so-called teleonomic (Pittendrigh, 1958) approaches in biology in which certain features and organizations are predicted as (more or less) necessary implications of a particular function which is known to be performed by the system to be analyzed.


Travel Salesman Problem Present Strategy Constitutive Function Preceding Strategy Control Locomotion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashby, W.R.: Design for a Brain, Chapman & Hall, London, 1952.Google Scholar
  2. Bellmore, M. and Nemhauser, G.: The Traveling Salesman Problem: a Survey, Operations Res. 16, 538–558 (1968).CrossRefMATHMathSciNetGoogle Scholar
  3. D’Arcy Thompson, W.: On Growth and Form. Rev. ed. Macmillan, New York, 1945.Google Scholar
  4. Darwin, C.: On the Origin of Species by Means of Natural Selection, Joha Murray, London (1859).Google Scholar
  5. Feller, W.: An Introduction to Probability Theory and its Applications,Wiley, New York, 3rd ed., 2 Vols., I 14, 41; II 159, 448–450 (1859).Google Scholar
  6. Fraenkel, G.S. & D.S. Gunn: The Orientation of Animals, Claredon Press, Oxford (1961).Google Scholar
  7. Hediger, H.: Studies of the Psychology and Behavior of Captive Animals in Zoos and Circuses, Butterworth, London (1955).Google Scholar
  8. Holland, J.H.: Hierarchical Descriptions, Universal Spaces and Adaptive Systems. In: Essays on Cellular Automata, ed. by A.W. Burks, Urbana,. Chicago, London, University of Illinois Press, 320–353 (1970).Google Scholar
  9. Lorenz, K.: Die Rückseite des Spiegels (The Other Side of the Mirror), Piper-Verlag, München, 1973.Google Scholar
  10. Mittelstaedt, H.: Control Theory as a Methodic Tool in Behavior Analysis (in German), Naturwissenschaften 48, 246–254, p. 248 (1961).CrossRefGoogle Scholar
  11. Nilsson, N.J.: Problem-solving Methods in Artificial Intelligence, McGraw-Hill, New York, 1971.Google Scholar
  12. Pittendrigh, C.S.: Perspective in the Study of Biological Clocks. In: Perspectives in Marine Biology, La Jolla, Calif., Scripps Institute of Oceanography, 1958.Google Scholar
  13. Rashevsky, N.: Topology and Life: In Search of General Mathematical Principles in Biology and Sociology, Bull. Math. Biophys. 16, 317–348 (1954).CrossRefMathSciNetGoogle Scholar
  14. Rashevsky, N.: Mathematical Principles in Biology and their Applications, Thomas Publ., Springfield, I11., 1961.MATHGoogle Scholar
  15. Rashevsky, N.: Models and Mathematical Principles in Biology. In: Theoretical and Mathematical Biology, ed. by T.H. Waterman & H.J. Morowitz, Blackwell Publ. Co., New York, 36–53 (1965).Google Scholar
  16. Rashevsky, N.: The Principle of Adequate Design. In: Foundations of Mathematical Biology, ed. by R. Rosen, Academic Press, New York, Vol. 3, 143–175 (1973).Google Scholar
  17. Rechenberg, I.: Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Friedrich Frommann-Verlag (Günter Holzboog K.G.), Stuttgart-Bad Cannstatt, 1973.Google Scholar
  18. Rosen, R.: A Relational Theory of Biological Systems II. Bull, Math. Biophys. 21, 109–128 (1959).CrossRefMathSciNetGoogle Scholar
  19. Rosen, R.: Optimality Principles in Biology, Butterworth, London, 1967.MATHGoogle Scholar
  20. Rosen, R.: RelationaleBiology. Fortschritte der experimentellen und theoretischen Biophysik, VEB Georg Thieme, Leipzig, Vol. 15, 1972a.Google Scholar
  21. Rosen, R.: Relations between Structural and Functional Descriptions of Biological Systems, Intern. J. Neurosci. 3 ,107–112 (1972b).CrossRefGoogle Scholar
  22. Rössler, O.E.: Design for Autonomous Chemical Growth under Different Environmental Constraints, Progr. Theor. Biol. 2 ,167–211 (1972).Google Scholar
  23. Rössler, O.E.: A Synthetic Approach to Exotic Kinetics, with Examples, These Proceedings (1974a).Google Scholar
  24. Rössler, O.E.: Chemical Automata in Homogeneous and Reaction-diffusion Kinetics, These Proceedings (1974b).Google Scholar
  25. Schpolski, E.W.: Atomphysik, VEB Verlag der Wissenschaften, Berlin, Vol. 1 (Section 23 and Appendix), 1970.Google Scholar
  26. Thom, R.: Topological Models in Biology. In: Towards a Theoretical Biology, ed. by C.H. Waddington, Edingburgh University Press, Edinburgh, Vol. 3, 89–116 (1970).Google Scholar
  27. von Holst, E. and Mittelstaedt, H.: Das Reafferenzprinzip (The Reafference Principle), Naturwissenschaften 37, 464–479 (1950).CrossRefGoogle Scholar
  28. Zeeman, E.C.: Topology of the Brain (Mathematics and Computer Sciences - in Biology and Medicine), Medical Research Council, London, 1965.Google Scholar
  29. Zeeman, E.C.: The Geometry of Catastrophe, Times Literary Supplement, 10th December 1971, 1556–1558 (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • O. E. Rössler
    • 1
  1. 1.Division of Theoretical ChemistryUniversity of TübingenTübingenFederal Republic of Germany

Personalised recommendations