Skip to main content

Complexity of Automata, Brains, and Behavior

  • Conference paper
Physics and Mathematics of the Nervous System

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 4))

Abstract

Organs other than the central nervous system have functions that are fairly well understood. The heart is a pump, the lung a gas exchanger, the kidney a filter. These functions had to remain mysterious to Hippocrates, Aristotle, and Galen whose times lacked an accurate chemistry, but now most of the mysteries are gone. The brain, however, is still poorly understood, as poorly as the other organs before modern physics and chemistry. The brain’s functions are not physical or chemical but cybernetic. The brain is a sensing and control organ. The theoretical framework for its functions is computer science, a discipline that has had much less time to mature than physics and chemistry, and consequently is less well developed. Understanding the brain remains a profound challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Arbib, M.A.: The Metaphorical Brain, Wiley-Interscience, New York, 1972.

    MATH  Google Scholar 

  • Ashby, W.R.: Design for a Brain, Chapman and Hall, London, 1952.

    Google Scholar 

  • Baer, R.M. and Martinez, H.M.: Automata and biology, to appear in Ann. Rev. Of Biophy. a. Bioeng., Ann. Rev., Inc., Palo Alto, California.

    Google Scholar 

  • Bennet, C.H.: Logical reversibility of computation, IBM Journ. Research and Developm. 17, 525–532 (1973).

    Article  Google Scholar 

  • Blum, M.: A machine independent theory of the complexity of recursive functions, Journ. Assoc. Comput. Mach. 14 322–336 (1967).

    MATH  Google Scholar 

  • Bremermann, H.J.: Limitations on data processing arising from quantum theory, Part I. in, Optimization through evolution and recombination. In: Self-Organizing Systems 1962, ed. by M.C. Yovits, G.T. Jacobi, and G.D.,Goldstein, pp. 93–106. Spartan Books, Washington, D.C., 1962.

    Google Scholar 

  • Bremermann, H.J.: Limits of genetic control, IEEE Transact. Mil. Electr. Vol. MIL-7, 200–205 (1963).

    Google Scholar 

  • Bremermann, H.J.: Quantitative aspects of goal-seeking self-organizing systems. In Progress in Theoretical Biology, Vol. 1, ed. by M. Snell, pp. 59–77. Academic Press, New York, 1967.

    Google Scholar 

  • Bremermann, H.J.: Quantum noise and information, Proceed. Fifth Berkeley Sympos. Math. Stat. and Prob. IV, 15–20, University of California Press, Berkeley, Calif. (1967b).

    Google Scholar 

  • Bremermann, H.J.: What mathematics can and cannot do for pattern recognition. In: Pattern Recognition in Biological and Technical Systems, ed. by O.J. GrĂĽsser, pp. 31–45. Springer-Verlag, Berlin, 1971.

    Google Scholar 

  • Bremermann, H.J.: Manifolds, models, automata and computability. To appear in Journal of Math. Biology (1974).

    Google Scholar 

  • Gottinger, H.W.: Computable organizations, representation by sequential machine theory, Memorandum ERL-M426, March 1974, Electronics Research Lab, University of California, Berkeley, Calif. (1974).

    Google Scholar 

  • Hartmanis, J. and Hopcroft, J.E.: An overview of the theor of computational complexity, Journal Assoc. Compt. Mach. 18, 444–475 (1971).

    MATH  MathSciNet  Google Scholar 

  • Hartmanis, J. and Stearns, R.E.: On the computational complexity of algorithms, Trans. Amer. Math. Soc. 117, 285–306 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  • Kaiman, R.E., Falb, P.L. and Arbib, M.A.: Topics in Mathematical Systems Theory, McGraw-Hill, New York, 1969.

    Google Scholar 

  • Karp, R.M.: Lecture Notes, Dept. of Computer Science, University of California, Berkeley, Calif. (1972).

    Google Scholar 

  • Keracuba, A. and Ofman, J.: Multiplication of many-digit numbers by computer automata (Russian), Dokl. Adad. Nauk, SSSR 145, 293–294 (1962).

    Google Scholar 

  • Keyes, R.W. and Landauer, R.: Minimal energy dissipation in logic, IBM Journ. Res. and Developm. 14 ,152–157 (1970).

    Article  Google Scholar 

  • Kleene, S.C.: Representations of events in nerve nets and finite automata. In: Automata Studies, ed. by C.E. Shannon and J. McCarthy. Annals of Math. Studies No. 34, Princeton University Press, Princeton, N.J. (1956)..

    Google Scholar 

  • Kolmogorov, A.N.: On the representation of continuous functions of several variables by superposition of continuous functions of a smaller number of variables, Dokl. Akad. Nauk SSSR 108, p. 2 (1956).

    Google Scholar 

  • Kolmogorov, A.N.: Three approaches for defining the concept of information quantity, Information Transmission 1, 3–11 (1965).

    MATH  MathSciNet  Google Scholar 

  • Kolmogorov, A.N.: The logical basis for information theory and probability theory, IEEE Transact. Information Theory, Vol. IT-14, 662–664 (1968).

    Article  MathSciNet  Google Scholar 

  • Kolmogorov, A.N. and Tichomirov, W.M.: ε-Entropie und ε-Kapazität von Mengen in Funktionalräumen, Arbeiten zur Informationstheorie III, VEB Deutscher Verlag der Wissenschaften, Berlin (1960).

    Google Scholar 

  • Krohn, K. and Rhodes, J.L.: Complexity of finite semigroups, Annals of Math., 88, 128–160 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  • Landauer, R.: Irreversibility and heat generation in the computing process, IBM Journ. Research and Developm. 5, 183–191 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  • McCulloch, W.S. and Pitts, W.: A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophysics, 5, 115–133 (1943).

    Article  MATH  MathSciNet  Google Scholar 

  • Ostrowski, A.M.: On two problems in abstract algebra connected with Horner’s rule, Studies in Mathematics and Mechanics, pp. 40–48, Academic Press, New York (1954).

    Google Scholar 

  • Pan, V. Ya.: Methods of computing values of polynomials, Russian Math. Surveys, 21 ,105–136 (1966).

    Article  Google Scholar 

  • Rhodes, J.L.: Application of automata theory and algebra via the mathematical theory of complexity, Notes, Dept. Math., University of California/Berkeley, Calif. (1971).

    Google Scholar 

  • Schönhage, A. and Strassen, V.: Schnelle Multiplikation grosser Zahlen, Computing, 7, 281–292 (1971).

    Article  MATH  Google Scholar 

  • Solomonoff, R.J.: A formal theory of inductive inference, Pt. I, Inform. Control, 7, 1–22, Pt. II, ibid., 224–254 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  • Stearns, R.E., Hartmanis, J. and Lewis, P.M.: Hierarchies of memory limited computations, IEEE Conf. Rec. on Switching Circuit Theory and Logical Design, IEEE Pub. 16C13, 179–190 (1965).

    Google Scholar 

  • Strassen, V.: Gaussian elimination is not optimal, Numerische Mathematik, 13 ,354–356 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  • Strassen, V.: Evaluation of rational functions. In: Complexity of Computer Computations, ed. by R.E. Miller, J.W. Thatcher and J.D. Bohlinger, pp. 1–10. Plenum Press, New York, 1972.

    Google Scholar 

  • Thom, R.: StabilitĂ© Structurelle et Morphogenese, Benjamin, Reading, Mass., 1972.

    Google Scholar 

  • Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem, Proceed. London Math. Soc. Ser. 2, Vol. 43, 230–265 (1936).

    Google Scholar 

  • Vitushkin, A.G.: Theory of the Transmission and Processing of Information, Pergamon Press, New York, 1961.

    MATH  Google Scholar 

  • Von Neumann, J.: The Computer and the Brain, Yale University Press, New Haven, Conn, 1958.

    MATH  Google Scholar 

  • Von Neumann, J. and Burks, A.W.: Theory of Self-reproducing Automata, University of Illinois Press, Urbana, I11., 1966.

    Google Scholar 

  • Von Neumann, J. and Morgenstern, O.: Theory of Games and Economic Behavior, Princeton Press, Princeton, N.J., 1953.

    MATH  Google Scholar 

  • Willis, D.G.: Computational complexity and probability constructions, Journ. Assoc. Comp. Mach. 17, 241–259 (1970).

    MATH  MathSciNet  Google Scholar 

  • Yost, J.L.: Modelling a Nerve Cell Membrane as a Finite-State Machine, M.A. thesis, Dept. Math., University of California, Berkeley, Calif (1973).

    Google Scholar 

  • Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes, IEEEE Transact. Systems, Man, Cybernetics, Vol. SMC-3, 28–44 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Bremermann, H. (1974). Complexity of Automata, Brains, and Behavior. In: Conrad, M., GĂĽttinger, W., Dal Cin, M. (eds) Physics and Mathematics of the Nervous System. Lecture Notes in Biomathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80885-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80885-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07014-6

  • Online ISBN: 978-3-642-80885-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics