Skip to main content

Part of the book series: Hochschultext ((HST))

  • 26 Accesses

Zusammenfassung

Speicher aus Halbleiterbauelementen haben in wenigen Jahren eine erhebliche Bedeutung erlangt. Noch kann kein Ende der stürmischen Entwicklung abgesehen werden [5.1]. Der Ferritkernspeicher, der seit 20 Jahren bis heute [5.2] seine Vorrangstellung halten konnte, ist auf dem Gebiet der Arbeitsspeicher in ernsthafte Gefahr geraten. Es erhebt sich die Frage, welche Gesichtspunkte für den weiteren Verlauf dieses technologischen Wettbewerbes maßgeblich sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Schrifttum zu Abschnitt 5

Abschnitt 5.1

  1. Graham, R.F.: Semiconductor memories: evolution or revolution. Datamation (1969) 6.

    Google Scholar 

  2. Feth, G.C.: Memories are bigger, faster and cheaper. IEEE Spectr. 10 (1973) 11, 28–35.

    Article  Google Scholar 

  3. Meade, R.M.: How a cache memory enhances a computer’s performance. Electronics 45 (1972) 2, 58–63.

    Google Scholar 

  4. Ayling, J.K.; Moore, R.D.; Tu, G.K.: A high performance monolithic store. ISSCC Dig. of Techn. Papers (1969) 36–37.

    Google Scholar 

  5. Agusta, B.: A 64 bit planar double diffused monolithic memory chip. ISSCC Dig. of Techn. Papers (1969) 38–39.

    Google Scholar 

  6. Farber, A.S.; Schlig, E.S.: A novel high-performance bipolar monolithic memory cell. IEEE J. SC 7 (1972) 4, 297–300.

    Google Scholar 

Abschnitt 5.2

  1. Rice, R.; Sander, W.B.; Greene Jr., F.S.: Design considerations leading to the ILLIAC IV LSI process element memories. IEEE J. SC 5 (1970) 5, 174–181.

    Google Scholar 

  2. Hodges, D.A.: Large semiconductor memory. IEEE Proc. 56 (1968) 7, 1148–1162.

    Article  Google Scholar 

  3. Lynes, D.J.; Hodges, D.A.: Memory using diode-coupled bipolar transistor cells. IEEE J. SC 5 (1970) 5, 186–191.

    Google Scholar 

  4. Beneking, H.: Feldeffekttransistoren. Berlin, Heidelberg, New York: Springer 1973.

    Book  Google Scholar 

  5. Kantz, D.; Mitterer, R.: GDQ 106, ein großintegrierter Speicherbaustein in MOS-Technik. Siemens Z. 45 (1971) 4, 313–315.

    Google Scholar 

  6. Huber, R.J.; et al.: Simplified n-channel process achieves high performance. Electronics 4 7 (1974) 5, 117–122.

    Google Scholar 

  7. Bizjak, J.F.: A new random access memory. Austral. Electr. Engin. 5 (1972) 12, 10–16.

    Google Scholar 

  8. Hoff Jr.; M.E.: The 1103–1024 memory bits on a chip. Electron. Des. 20 (1972) 2, 40–45.

    Google Scholar 

  9. Hoff Jr., M.E.: 5 W per million bit of memory. Electron. Des. 20 (1972) 5, 50–53.

    Google Scholar 

  10. Hoff Jr., M.E.: Silicon-gate dynamics MOS crams 1024 bits on a chip. Electronics 43 (1970) 16, 68–73.

    Google Scholar 

  11. Regitz, W.M.; Karp, J.A.: Three-transistor 1024-bit 500 ns MOS RAM. IEEE J. SC 5 (1970) 5, 181–186.

    Google Scholar 

  12. Abbott, R.A.; Regitz, W.M.; Karp, J.A.: A 4k MOS dynamic random access memory. IEEE J. SC 8 (1973) 5, 292–298.

    Google Scholar 

  13. Boonstra, L.; Lambrechtse, C.W.; Salters, R.H.W.: A 4096-b one-transistor per bit random access memory with internal timing and low dissipation. IEEE J. SC 8 (1973) 5, 305.

    Google Scholar 

  14. Stein, K.U.; Friedrich, H.: A 1-mil2 single-transistor memory cell in n silicon-gate technology. IEEE J. SC 8 (1973) 5, 319.

    Google Scholar 

  15. Hoffman, W.K.; Kalter, H.L.: An 8k b random access memory chip using the one-device FET cell. IEEE J. SC 8 (1973) 5, 298.

    Google Scholar 

  16. Wiedmann, S.K.: Injection-coupled memory: a high density static bipolar memory. IEEE J. SC 8 (1973) 5, 332.

    Google Scholar 

  17. Berger, H.H.; Wiedmann, S.K.: Merged-transistor logic (MTL) — a low-cost bipolar logic concept. IEEE J. SC 7 (1972) 5, 340–346.

    Google Scholar 

  18. Hart, K.; Slob, A.: Integrated injection logic: a new approach to LSI. IEEE J. SC 7 (1972) 5, 346–351.

    Google Scholar 

  19. Harth, W.: Halbleitertechnologie. Teubner Studienskripten. Stuttgart: B.G. Teubner 1972.

    Google Scholar 

  20. Fogiel, M.: Modern microelectronics. New York: Research and Education Association 1972.

    Google Scholar 

  21. Schneider, H.G. (Hrsg.): Grundlagen aktiver elektronischer Bauelemente. Leipzig: VEB Verlag für Grundstoffindustrie 1972.

    Google Scholar 

  22. Becker, D.; Maeder, H.: Hochintegrierte MOS-Schaltungen. Stuttgart: Berliner Union 1972.

    Google Scholar 

  23. Baitinger, U.G.: Schaltkreistechnologien für digitale Rechenanlagea. Berlin, New York: de Gruyter & Co. 1973.

    Google Scholar 

  24. Goser, K.: Speicher kleiner Verlustleistung in P-Kanal-MOS-Technik mit Sonderprozessen und in Komplementärkanal-MOS-Technik. Nachrichtentechn. Z. 26 (1973) 1, 9–15.

    Google Scholar 

  25. Goser, K.; Pomper, M.: Five-transistor memory cells in ESFI MOS-technology. IEEE J. SC 8 (1973) 5, 324–326.

    Google Scholar 

  26. Drangeid, K.E., et al.: A memory cell array with normally off-type Schottky-barrier FET’s. IEEE J. SC 7 (1972) 4, 277–282.

    Google Scholar 

  27. Suzuki, S., et al.: A static random access memory with normally-off-type Schottky-barrier FET’s. IEEE J. SC 8 (1973) 5, 326.

    Google Scholar 

Abschnitt 5.3

  1. Brockelsby, CF.: Ultrasonic delay lines. London: Iliffe Books Ltd. 1963.

    Google Scholar 

  2. Matick, R.E.: Review of current proposed technologies for mass storage systems. IEEE Proc. 60 (1972) 3, 266–289.

    Article  Google Scholar 

  3. Sangster, F.L.J.: Integrated MOS and bipolar delay lines using bucket brigade capacitor storage. Dig. Intern. Solid State Circ. Conf., Febr. 1970, 74.

    Google Scholar 

  4. Sangster, F.L.J.: Der “Eimerkettenspeicher”, ein Schieberegister für analoge Signale. Philips Techn. Rdsch. 4 (1970/71) 97.

    Google Scholar 

  5. Berglind, C.N.; Boll, H.J.: Performance limitations of the IGFET bucket brigade shift register. IEEE Trans. ED 9 (1972) 7, 852–860.

    Article  Google Scholar 

  6. Pfleiderer, H.J,: Der Einfluß der Kollektor-Emitter-Kapazität auf das Übertragungsverhalten des Bucket-brigade-Schieberegisters. Nachrichtentechn. Z. 26 (1973) 5, 203–210.

    Google Scholar 

  7. Boonstra, L.; Sangster, F.L.J.: Analog functions fit neatly onto charge transport chips. Electronics 45 (1972) 5, 64–71.

    Google Scholar 

  8. Altmann, L.: The new concept for memory and imaging: charge coupling. Electronics 44 (1971) 13, 50–52.

    Google Scholar 

  9. Boyle, W.S.; Smith, G.E.: Charge-coupled devices — a new approach to MIS device structures. IEEE Spectr. 8 (1971) 7, 18–27.

    Article  Google Scholar 

  10. Carnes, J.E.; Kosonocky, W.F.; Ramberg, E.G.: Free charge transfer in charge-coupled devices. IEEE Trans. ED 19 (1972) 6, 798–808.

    Article  Google Scholar 

  11. Engeler, W.E.; Tiemann, J.J.; Baertsch, R.D.: A memory system based on surface-charge transport. IEEE J. SC 6 (1971) 5, 306–313.

    Google Scholar 

  12. Tompsett, M.F.: A simple charge regenerator for use with charge-coupled und bucket-brigade shift registers and the design of functional logic arrays. IEEE ISSCC Dig. of Techn. Papers (1971) 160–161.

    Google Scholar 

  13. Kosonocky, W.F.; Carnes, J.E.: Charge-coupled digital circuits. IEEE J. SC 6 (1971) 5, 314–322.

    Google Scholar 

  14. Tompsett, M.F.; Zimany, E.J.: Use of charge-coupled devices for analog delay. IEEE ISSCC Dig. of Techn. Papers (1972) 136–137.

    Google Scholar 

  15. Sequin, C.H., et al.: A charge-coupled area image sensor and frame store. IEEE Trans. ED 20 (1973) 3, 244–252.

    Article  Google Scholar 

  16. Sangster, F.L.J.; Teer, K.: Bucket-brigade electronics-new possibilities for delay, time-axis conversion and scanning. IEEE J. SC 4 (1969) 3, 131–136.

    Google Scholar 

Abschnitt 5.4

  1. Scharbert, J.: Festwertspeicher. Entwickl.-Ber. Siemens-Halske Werke 32 (1969) 30–34.

    Google Scholar 

  2. Feustel, O.: Elektronische Zuordner. Elektron. Rechenanl. 7 (1965) 1, 9–24.

    Google Scholar 

  3. Mazda, F.F.: The components of computers — part 5: the read only memory. Electron. Comp. 13 (1972) 20, 999–1006.

    Google Scholar 

  4. Rizzi, J.D.: Electrically programable ROMS. Electron. Comp. 12 (1971) 22, 1279–1280.

    Google Scholar 

  5. Barrett, J.C.; et al.: Design considerations for a high-speed bipolar read-only memory. IEEE J. SC 5 (1970) 5, 196.

    Google Scholar 

  6. Frohman-Bentchkowsky, D.: The metal-nitride-oxide-silicon (MNOS) transistor-characteristics and applications. IEEE Proc. 58 (1970) 8, 1207–1219.

    Article  Google Scholar 

  7. Horninger, K.: Elektrisch umprogrammierbare Speichermatrix mit MNOS-Transistoren. Elektron.-Ind. 4 (1972) 5/6, 94–95.

    Google Scholar 

  8. Carlstedt, L.G.; Svensson, C.M.: MNOS memory transistor in simple memory arrays. IEEE J. SC 7 (1972) 5, 382–386.

    Google Scholar 

  9. Nakanuma, S.; et al.: Read-only memory using MAS transistors. IEEE J. SC 5 (1970) 5, 203–207.

    Google Scholar 

  10. Balk, P.; Stephany, F.: Charge storage in MAOS structures. Nachrichtentechn. Z. 23 (1970) 10, 526–527.

    Google Scholar 

  11. Frohman-Bentchkowsky, D.: A fully decoded 2048-bit electrically programable FAMOS read-only memory. IEEE J. SC 6 (1971) 5, 301–306.

    Google Scholar 

  12. Haberland, D. Der Chalkogenidglas-Schwellwertschalter. Frequenz 27 (1973) 3, 68–74.

    Article  Google Scholar 

  13. Neale, R.G.; Nelson, D.L.; Moore, G.E.: Nonvolatile and reprogramable, the read-mostly memory is here. Electronics 43 (1970) 20, 56–60.

    Google Scholar 

  14. Kirchner, J.H.: Halbleiterspeicher. Der Elektroniker 11 (1972) 4, 175–184.

    Google Scholar 

Abschnitt 5.5

  1. Weil, G.: Assoziativspeicher: Konzeption-Anwendung-Aufbau. NTZ-Kurier 10 (1973) K 175.

    Google Scholar 

  2. Leilich, H.O.; Karlowsky, I.; Lawrenz, W.; Zeidler, H.Ch.: Ein Rechnerkonzept mit assoziativem Arbeitsspeicher — Prinzip und Organisation. In: Lectures Notes in Computer Science, Bd. 8 Berlin, Heidelberg, New York: Springer 1974.

    Google Scholar 

  3. Hanlon, A.G.: Content-adressable and associative memory systems — a survey. IEEE Trans. EC 15 (1966) 509–521.

    Google Scholar 

  4. Behrooz Parhami: Associative memories and processors: an overview and selected bibliography. IEEE Proc. 61 (1973) 6, 722–730.

    Article  Google Scholar 

  5. High-Speed content-adressable memory TMS %000 JC, TMS 4000 NC. Texas Instruments Integrated Circuits Data Book. Dallas, Texas: Texas Instruments Inc. 1971.

    Google Scholar 

Abschnitt 5.6

  1. Hittinger, W.C.: Metal-oxide semiconductor technology. Scient. Amer. 229 (1973) 2, 48–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag. Berlin/Heidelberg

About this chapter

Cite this chapter

Seitzer, D. (1975). Halbleiterspeicher. In: Arbeitsspeicher für Digitalrechner. Hochschultext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80868-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80868-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06928-7

  • Online ISBN: 978-3-642-80868-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics