Technical Progress, Neutral Inventions, and Cobb-Douglas

  • Wolfgang Eichhorn
  • Serge-Christophe Kolm
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 99)


In 1961, H. Uzawa [5] showed that Hicks neutrality 1) of inventions (or technical progress) together with Harrod neutrality imply that the underlying production function Φ is Cobb-Douglas. His proof requires differentiability up to the second order and, clearly, the linear homogeneity of Φ. W. Krelle, 1969, in a similar context [3, pp.123ff], also assumes both differentiability and linear homogeneity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ACZÉL, J.: Lectures on Functional Equations and Their Applications. Academic Press, New York and London 1966.Google Scholar
  2. [2]
    EICHHORN, W.: Theorie der homogenen Produktionsfunktion. Lecture Notes in Operations Research and Mathematical Systems, Vol.22. Springer-Verlag, Berlin — Heidelberg — New York 1970.Google Scholar
  3. [3]
    KRELLE, W. unter Mitarbeit von W. Scheper: Produktionstheorie. Teil I der Preistheorie 2. Auflage. J.C.B. Mohr (Paul Siebeck), Tübingen 1969.Google Scholar
  4. [4]
    SATO, R., and M.J. BECKMANN: Neutral Inventions and Production Functions. Review of Economic Studies 35. (1968), 57–66.CrossRefGoogle Scholar
  5. [5]
    UZAWA, H.: Neutral Inventions and the Stability of Growth Equilibrium. Review of Economic Studies 28 (1961), 117–123.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • Wolfgang Eichhorn
  • Serge-Christophe Kolm

There are no affiliations available

Personalised recommendations