Semi-Homogeneous Production Functions and Scaling of Production

  • Ronald W. Shephard
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 99)

Abstract

Scaling laws for production have been used or implied in various economic analyses of “returns to scale,” all of which known to the writer use a scalar valued production function Φ(x) of homothetic form.(1) Typically, a homogeneous function Φ(x) is used, as in [6], of Cobb-Douglas or CES type. In [12], a homothetic form g(f(x)) is used with scaling function σ(λ,g), i.e., g(f(λx)) = σ(λ,g)•g(f(x)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Clerahout, S., “The Class of Homothetic Isoquant Production Functions,” Review of Economic Studies, Vol. 35, pp. 91–104, (1968).CrossRefGoogle Scholar
  2. [2]
    Debreu, G., THEORY OF VALUE, John Wiley & Sons, New York, (1959).Google Scholar
  3. [3]
    Eichhorn, W., “Eine Verallgemeinerung des Begriffs der homogenen Produktionsfunktion,” Unternehmensforschung, Vol. 13, No. 2, pp. 99–109, (1969).CrossRefGoogle Scholar
  4. [4]
    Goldman, S. M. and R. W. Shephard, “On Eichhorn’s Generalization of Homogeneous Production Functions,” ORC 71–14, Operations Research Center, University of California, Berkeley, (July 1971).Google Scholar
  5. [4]
    Goldman, S. M. and R. W. Shephard, “On Eichhorn’s Generalization of Homogeneous Production Functions,” Unternehmensforschung, Vol. 16, No. 5, pp. 215–219, (1972).Google Scholar
  6. [5]
    McElroy, F. W., “Returns to Scale, Euler’s Theorem, and the Form of Production Functions,” Econometrica, Vol. 37, No. 2, (April 1969).CrossRefGoogle Scholar
  7. [6]
    Nerlov, M., “Returns to Scale in Electric Supply,” STUDIES IN MATHEMATICAL ECONOMICS AND ECONOMETRICS, Stanford University Press, (1963).Google Scholar
  8. [7]
    Shephard, R. W., COST AND PRODUCTION FUNCTIONS, Princeton University Press, (1953).Google Scholar
  9. [8]
    Shephard, R. W., “The Notion of a Production Function,” Unternehmensforschung, Vol. 11, No. 4, pp. 209–232, (1967).CrossRefGoogle Scholar
  10. [9]
    Shephard, R. W., THEORY OF COST AND PRODUCTION FUNCTIONS, Princeton University Press, (1970).Google Scholar
  11. [10]
    Shephard, R. W., “Proof of the Law of Diminishing Returns,” Zeitschrift für Nationalökonomie, Vol. 30, pp. 7–34, (1970).CrossRefGoogle Scholar
  12. [11]
    Färe, R., “Strong Limitationality of Essential Proper Subsets of Factors of Production,” Zeitschrift für Nationalökonomie, Vol. 32, No. 4, (1972).Google Scholar
  13. [12]
    Zellnar, A. and N. J. Revankar, “Generalized Production Functions,” Review of Economic Studies, Vol. 36, (April 1969).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • Ronald W. Shephard

There are no affiliations available

Personalised recommendations