Inhibitors of RNA Synthesis that Interact with the DNA Template

  • Helga Kersten
  • Walter Kersten
Part of the Molecular Biology, Biochemistry and Biophysics book series (MOLECULAR, volume 18)

Abstract

Antibiotics interfering with the transcription of DNA can at present be subdivided into two classes:
  1. 1.

    those interacting with the DNA template

     
  2. 2.

    those which specifically affect either prokaryotic or eukaryotic RNA polymerases. Chapter II is concerned with the inhibitors of the DNA template; Chapter III deals with the specific inhibitors of prokaryotic and eukaryotic RNA polymerase.

     

Keywords

Sugar Streptomyces Pyrimidine Dinucleotide Adriamycin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACS, G., REICH, E., VALANJU, S.: Ribonucleic acid metabolism of Bacillus subtilis. Effects of actinomycin. Biochim. biophys. Acta (Amst.) 761 68–79 (1963).Google Scholar
  2. ANGERMAN, N.S., VICTOR, T.A., BELL, C.L., DANYLUK, S.S.: A proton magnetic resonance study of the aggregation of actinomycin D in D2O. Biochemistry 11, 2402–2411 (1972).PubMedGoogle Scholar
  3. ARISON, B.H., HOOGSTEEN, K.: Nuclear magnetic resonance spectral studies on actinomycin D. Preliminary observations on the effect of complex formation with S’-deoxyguanylic acid. Biochemistry 9, 3976–3983 (1970).PubMedGoogle Scholar
  4. ASCOLI, F., De SANTIS, P., SAVINO, M.: Solvent effect on the conformation of actinomycin D. Nature 227, 1237–1241 (1970).PubMedGoogle Scholar
  5. BADER, J.P.: The role of deoxyribonucleic acid in the synthesis of Rous sarcoma virus. Virology 22 462–468 (1964).PubMedGoogle Scholar
  6. BALTIMORE, D.: Viral RNA-dependent DNA polymerase. Nature 226, 1209–1211 (1970).PubMedGoogle Scholar
  7. BARRY, R.D.: The effects of actinomycin D and ultraviolet irradiation on the production of fowl plague virus. Virology 24, 563–569 (1964).PubMedGoogle Scholar
  8. BARRY, R.D., IVES, D.R., CRUICKSHANK, J.G.: Participation of deoxyribonucleic acid in the multiplication of influenza virus. Nature 194, 1139–1140 (1962).PubMedGoogle Scholar
  9. BASERGA, R., ESTENSEN, R.D., PETERSEN, R.O., LAYDE, J.P.: Inhibition of DNA synthesis in Ehrlich ascites cells by actinomycin D. I. Delayed inhibition by low doses. Proc. nat. Acad. Sci. (Wash.) 54, 745–751 (1965).Google Scholar
  10. BEABEALASHVILLY, R.S., GURSKY, G.V., SAVOTCHKINA, L.P., ZASEDATELEV, A.S.: RNA polymerase-DNA complexes. III. Binding of actinomycin D to RNA polymerase-DNA complex. Biochim. biophys. Acta 294, 425 to 433 (1973).PubMedGoogle Scholar
  11. BENEDETTO, A., DELFINI, C., PULEDDA, S., SEBASTIANI, A.: Actinomycin D binding to 37RC and HeLa cell lines. Biochim. biophys. Acta (Amst.) 287, 330–339 (1972).Google Scholar
  12. BERNARDI, G.: Mechanism of action and structure of acid deoxyribo nuclease. Adv. Enzymol. 31, 1–49 (1968).PubMedGoogle Scholar
  13. BLOBEL, G., POTTER, V.R.: Studies on free and membrane-bound ribosomes in rat liver. II. Interaction of ribosomes and membranes. J. molec. Biol. 26, 293–301 (1967).PubMedGoogle Scholar
  14. BROCKMANN, H.: Structural differences of the actinomycins and their derivatives. Ann. N.Y. Acad. Sci. 89, 323–335 (1960a).Google Scholar
  15. BROCKMANN, H.: Die Actinomycine. Fortschr. Chem. org. Naturstoffe 18, 1–54 (1960b).Google Scholar
  16. BROCKMANN, H., AMMAN, J., MÜLLER, W.: 7-Chlor und 7-Brom-Actinomycine. Tetrahedon Letters 3595–3597 (1966a).Google Scholar
  17. BROCKMANN, H., LACKNER, H.: Totalsynthese von Actinomycin Ci (D). Naturwissenschaften 51, 384–385 (1964a).Google Scholar
  18. BROCKMANN, H., LACKNER, H.: Totalsynthese von Actinomycin C2. Tetrahedon Letters 3517–3521 (1964b).Google Scholar
  19. BROCKMANN, H., LACKNER, H.: Totalsynthese von Actinomycin C3 über Bis-seco-actinomycin C3. Chem. Ber. 100, 353–369 (1967).Google Scholar
  20. BROCKMANN, H., MÜLLER, W., PETERSSEN-BORSTEL, H.: Actinomycin-Derivate aus Dihydro-Actinomycin. Tetrahedon Letters 3531–3535 (1966b).Google Scholar
  21. BROCKMANN, H., SCHRAMM, W.: Synthese von Actinomycin-(thr-val-prosar-meval), dem Antipoden von Actinomycin Cjf. Tetrahedon Letters 2331–2333 (1966).Google Scholar
  22. BROCKMANN, H., SEELA, F.: Synthese von 1,8-Didesmethyl-Actinomycin Ci. Tetrahedon Letters 4803–4805 (1965).Google Scholar
  23. CAVALIERI, L.F., NEMCHIN, R.G.: The mode of interaction of actinomycin D with deoxyribonucleic acid. Biochim. biophys. Acta (Amst.) 87, 641–652 (1964).Google Scholar
  24. CAVALIERI, L.F., NEMCHIN, R.G.: The binding of actinomycin D and F to bacterial DNA. Biochim. biophys. Acta (Amst.) 166, 722–725 (1968).Google Scholar
  25. CERAMI, A., REICH, E., WARD, D.C., GOLDBERG, I.H.: The interaction of actinomycin with DNA; requirement for the 2-amino group of purines. Proc. nat. Acad. Sci. (Wash.) 57, 1036–1042 (1967).Google Scholar
  26. CHEN, D., SARID, S., KATACHALSKI, E.: Studies on the nature of messenger RNA in germinating wheat embryos. Proc. nat. Acad. Sci. (Wash.) 60, 902–909 (1968).Google Scholar
  27. CHENG, T.-Y., SUEOKA, N.: Polymer similar to polydeoxyadenylate- thymidylate in various tissues of a marine crab. Science 143, 1442–1443 (1964).PubMedGoogle Scholar
  28. CLEFFMANN, G.: Bildung zusätzlicher DNS nach Blockierung der Zellteilung von Tetrahymena durch Actinomycin. Z. Zellforsch. 70, 290–297 (1966).PubMedGoogle Scholar
  29. COLEMAN, G., ELLIOTT, W.H.: Extracellular ribonuclease formation in B. subtilis by actinomycin D. Nature 202, 1083–1085 (1964).PubMedGoogle Scholar
  30. CONTI, F., De SANTIS, P.: Conformation of actinomycin-D. Nature 227, 1239–1241 (1970).PubMedGoogle Scholar
  31. CROTHERS, D.M., SABOL, S.L., RATNER, D.I., MÜLLER, W.: Studies concerning the behaviour of actinomycin in solution. Biochemistry 7, 1817–1823 (1968).PubMedGoogle Scholar
  32. DARNELL, J.E.: Ribonucleic acids from animal cells. Bact. Rev. 32, 262–290 (1968).PubMedGoogle Scholar
  33. De SANTIS, P., RIZZO, R., UGHETTO, G.: Structure of actinomycin based on conformational studies. Nature New Biology 237, 94–95 (1972).PubMedGoogle Scholar
  34. EAGLE, G.R., ROBINSON, D.S.: The ability of actinomycin D to increase the clearing-factor lipase activity of rat adipose tissue. Biochem. J. 93, 10c-11c (1964).PubMedGoogle Scholar
  35. ENGELS, W.: Zur Wikrung und Lokalisation von 3H-Actinomycin D in Eifollikeln von Musca domestica nach in vivo-Applikation. Histochemie 19, 224–234 (1969).PubMedGoogle Scholar
  36. FIELD, J.B., COSTA, F., BORYCZKA, A., SEKELY, L.I.: Experimental evaluation of the anticarcinogenic activity of a new antibiotic, actinomycin C. Antibiotics Annual, 1954–1955, New York 1955.Google Scholar
  37. FIRTEL, R. A., BAXTER, L-., LODISH, H.F.: Actinomycin D and the regulation of enzyme biosynthesis during development of Dictyostelium discoideum. J. molec. Biol. 79, 315–327 (1973).PubMedGoogle Scholar
  38. FISCHER, H., MÜNK, K.: Wirkung von Actinomycin D auf die DNA-Synthese in SV4o infizierten exponentiell wachsenden und stationären Zellen. Z. Krebsforsch. 74, 390–395 (1970).PubMedGoogle Scholar
  39. FOLEY, G.E., McCarthy, R.E., BINNS, V.M., SNELL, E.E., GUIRARD, B.M., KIDDER, G.W., DEWEY, V.C., THAYER, P.S.: A comparative study of the use of microorganisms in the screening of potential antitumour agents. Ann. N.Y. Acad. Sci. 76, 413–441 (1958).PubMedGoogle Scholar
  40. FRANKLIN, R.M.: The inhibition of ribonucleic acid synthesis in mammalian cells by actinomycin D. Biochim. biophys. Acta (Amst.) 72, 555–565 (1963).Google Scholar
  41. GARREN, L.D., HOWELL, R.R., TOMKINS, G.M., GROCCO, R.M.: A paradoxical effect of actinomycin D: The mechanism of regulation of enzyme synthesis by hydrocortisone. Proc. nat. Acad. Sci. (Wash.) 52, 1121–1129 (1964).Google Scholar
  42. GELLERT, M., SMITH, C.E., NEVILLE, D., FELSENFELD, G.: Actinomycin binding to DNA; mechanism and specificity. J. molec. Biol. 11, 445–457 (1965).PubMedGoogle Scholar
  43. GOLDBERG, I.H., FRIEDMAN, P.A.: Antibiotics and nucleic acids. Ann. Rev. Biochem. 40, 775–810 (1971).PubMedGoogle Scholar
  44. GOLDBERG, I.H., RABINOWITZ, M.R.: Actinomycin D inhibition of deoxyribonucleic cid-dependent synthesis of ribonucleic acid. Science 136, 315–316 (1962).PubMedGoogle Scholar
  45. GOLDBERG, I.H., RABINOWITZ, M., REICH, E.: Basis of actinomycin action. I. DNA binding and inhibition of RNA-polymerase synthetic reactions by actinomycin. Proc. nat. Acad. Sci. (Wash.) 48, 2094 to 2101 (1962).Google Scholar
  46. GOLDBERG, I.H., RABINOWITZ, M., REICH, E.: Basis of actinomycin action. II. Effect of actinomycin on the nucleoside triphosphate- inorganic pyrophosphate exchange. Proc. nat Acad. Sci. (Wash.) 49, 226–229 (1963).Google Scholar
  47. GOLDSTEIN, M.N., SLOTNICK, I.J., HILLMANN, M.H., GALLAGHER, J.: Cytochemical and biochemical studies on HeLa cells sensitive and resistant to actinomycin D. Proc. Amer. Ass. Cancer Res. 23–23 (1959).Google Scholar
  48. GOMATOS, P.J., TAMM, I.: Animal and plant viruses with double-helical RNA. Proc. nat. Acad. Sci. (Wash.) 50, 878–885 (1963).Google Scholar
  49. GURSKY, G.V.: Structure of DNA-actinomycin complex. Môl. Biol. SSSR 1L, 749–757 (1969).Google Scholar
  50. HACKMANN, C.: Experimentelle Untersuchungen über die Wirkung von Actinomycin (HBF 386) bei bösartigen Geschwülsten. Z. Krebsforsch. 58, 607–613 (1952).PubMedGoogle Scholar
  51. HACKMANN, C.: HBF 386 (actinomycin C) ein cytostatisch wirksamer Naturstoff. Strahlentherapie 90, 296–300 (1953).PubMedGoogle Scholar
  52. HACKMANN, C.: Stoffwechselprodukte aus Mikroorganismen (Antibiotika) als antineoplastische Wirkstoffe. Dtsch. med. Wschr. 80, 812–818 (1955).PubMedGoogle Scholar
  53. HAMELIN, R., LARSEN, C.J., TAVITIAN, A.: Effects of actinomycin D, toyocamycin and cycloheximide on the synthesis of low-molecular-weight nuclear RNAs in HeLa cells. Europ. J. Biochem. 35, 350–356 (1973).PubMedGoogle Scholar
  54. HAMILTON, L.D., FULLER, W., REICH, E.: X-ray diffraction and molecular model building studies of the interaction of actinomycin with nucleic acids. Nature 198, 538–540 (1963).PubMedGoogle Scholar
  55. HANDSCHACK, W., LINDIGKEIT, R.: Degradation of accumulated different chloramphenicol-RNAs of Bacillus megaterium treatment with actinomycin D. Biochem. biophys. Res. Commun. 23, 793–798 (1966).PubMedGoogle Scholar
  56. HARBERS, E., MÜLLER, W.: On the inhibition of RNA-synthesis by actinomycin. Biochem. biophys. Res. commun. 7, 107–110 (1962).PubMedGoogle Scholar
  57. HARBERS, E., MÜLLER, W., BACKMANN, R.: Untersuchungen zum Wirkungsmechanismus der Actinomycine. II. Versuche mit 14C-Actinomycin an Ehrlich Ascitestumorzellen in vitro. Biochem. Z. 337, 224–231 (1963a).PubMedGoogle Scholar
  58. HARBERS, E., BUJARD, H., MÜLLER, W.: Untersuchungen zum Wirkungsmechanismus der Actinomycine. IV. In vivo-Versuche mit 11C-markiertem Cl. III. International Congress of Chemotherapy 2, 995–1000. Stuttgart: Thieme 1963b.Google Scholar
  59. HAREL, L., HAREL, J., BOER, A., IMBENOTTE, J., CARPENI, N.s Persistance d’une synthèse de D-RNA dans le foie de rat traité par 1’actinomycine. Biochim. biophys. Acta (Amst.) 117 212–218 (1964).Google Scholar
  60. HARTMANN, G., COY, U.: Zum biologischen Wirkungsmechanismus des Actinomycine. Angew. Chem. 7A, 501 (1962).Google Scholar
  61. HARTMANN, G., COY, U., KNIESE, G.: Zum biologischen Wirkungsmechanismus der Actinomycine. Hoppe Seylers Z. physiol. Chem. 330, 227–233 (1962).Google Scholar
  62. HAYWOOD, A.M., HARRIS, J.M.: Actinomycin inhibition of MS 2 replication. J. molec. Biol. 18, 448–463 (1966).PubMedGoogle Scholar
  63. HILL, R.B., Jr., SAUNDERS, E.H.: Actinomycin D and membrane polysome interaction/abstrat rat liver RNA synthesis (Abstract). Amer. J. Pathol. 55, 36A-37A (1969).Google Scholar
  64. HO, P.P.K., WALTERS, C.P.: Influenza virus-induced ribonucleic acid nucleotidyl-transferase and the effect of actinomycin D on its formation. Biochemistry 5, 231–235 (1966).PubMedGoogle Scholar
  65. HURWITZ, J., FURTH, J.J., MALAMY, M., ALEXANDER, M.: The role of deoxyribonucleic acid in ribonucleic acid synthesis. III. The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavine. Proc. nat. Acad. Sci. (Wash.) 418, 1222–1230 (1962).Google Scholar
  66. HYMAN, R.W., DAVIDSON, N.: Kinetics of the in vitro inhibition of transcription by actinomycin. J. molec. Biol. 50, 421–438 (1970).PubMedGoogle Scholar
  67. JAIN, S.C., SOBELL, H.M.: Stereochemistry of actinomycin binding to DNA. I. Refinement and further structural details of the actinomycin-deoxyguanosine crystalline complex. J. molec. Biol. 68, 1–20 (1972).PubMedGoogle Scholar
  68. KATZ, E.: Biogenesis of actinomycins. Ann. N.Y. Acad. Sci. 89, 304–322 (1960).PubMedGoogle Scholar
  69. KATZ, E., WEISSBACH, H.: Biosynthesis of the actinomycin chromophor; enzymatic conversion of 4-methyl-3-hydroxy-anthranilic acid to actinocin. J. biol. Chem. 237, 882–886 (1962).PubMedGoogle Scholar
  70. KAWAMATA, J., IMANISHI, M.: Interaction of actinomycin with DNA. Nature J 87, 1112–1113 (1996).Google Scholar
  71. KAWAMATA, J., IMANISHI, M.: Mechanism of action of actinomycin with special reference to its interaction with deoxyribonucleic acid. Biken’s J. 4, 13–24 (1961).Google Scholar
  72. KAWAMATA, J., OKUDAIRA, M., AKAMATSU, Y.: Autoradiographic studies on the intracellular distribution of 3H-actinomycin S in TG cells. Biken’s J. 8, 119–127 (1965).Google Scholar
  73. KAY, J.E., COOPER, H.L.: Differential inhibition of 28S and 18S ribosomal RNA synthesis by actinomycin. Biochem. biophys. Res. Commun. 35, 526–530 (1969).PubMedGoogle Scholar
  74. KELLY, T.J., SMITH, H.O.: A restriction enzyme from Hemophilus influenzae. II. Base sequence of the recognition site. J. molec. Biol. 51, 393–409 (1970).PubMedGoogle Scholar
  75. KERSTEN, W.: Reaktion von Actinomycin mit DNS und RNS. Symposium über Krebsprobleme 1960, S. 146–150. Berlin-Göttingen-Heidelberg: Springer 1961a.Google Scholar
  76. KERSTEN, W.: Interaction of actinomycin C with constituents of nucleic acid. Biochim. biophys. Acta (Amst.) 47, 610–611 (1961b).Google Scholar
  77. KERSTEN, W., KERSTEN, H.: Zur Wirkungsweise von Actinomycinen. II. Bildung überschüssiger Desoxyribonukleinsäure in Bacillus subtilis. Hoppe Seylers Z. physiol. Chem. 327, 234–242 (1962a).PubMedGoogle Scholar
  78. KERSTEN, W., KERSTEN, H.: Zur Wirkungsweise von Actinomycinen. III. Bindung von Actinomycin C an Nukleinsäuren und Nukleotide. Hoppe Seylers Z. physiol. Chem. 330, 21–30 (1962b).PubMedGoogle Scholar
  79. KERSTEN, W., KERSTEN, H., RAUEN, H.M.: Action of nucleic acids on the inhibition of growth by actinomycin of Neurospora crassa. Nature 187, 60–61 (1960).PubMedGoogle Scholar
  80. KERSTEN, W., KERSTEN, H., SZYBALSKI, W.: Physico-chemical properties of complexes between deoxyribonucleic acid and antibiotics which affect ribonucleic acid synthesis. Biochemistry J3, 236–244 (1966).Google Scholar
  81. KIRK, J.M.: The mode of action of actinomycin D. Biochim. biophys. Acta (Amst.) 42, 167–169 (1960).Google Scholar
  82. KORN, D.: Inhibition of bacteriophage T4 deoxyribonucleic acid maturation by actinomycin D: The accumulation of “replicating deoxyribonucleic acid”. J. biol. Chem. 242, 160–162 (1967).PubMedGoogle Scholar
  83. KORN, D., PROTASS, J.J., LEIVE, L.: A novel effect of actinomycin D in preventing bacteriophage T4 maturation in E. coli. Biochem. biophys. Res. Commun. 473–481 (1965).Google Scholar
  84. KRUGH, T.R.: Association of actinomycin D and deoxyribonucleotid.es as a model for binding of the drug to DNA. Proc. nat. Acad. Sci. (Wash.) 69, 1911–1914 (1972).Google Scholar
  85. KRUGH, T.R., NEELY, J.W.: Actinomycin D-mononucleotide interactions as studied by proton magnetic resonance. Biochemistry 12, 1775 to 1782 (1973a).PubMedGoogle Scholar
  86. KRUGH, T.R., NEELY, J.W.: Actinomycin D-deoxydinucleotide interactions as a model for binding of the drug to deoxyribonucleic acid. Proton magnetic resonance results. Biochemistry 12, 4418–4425 (1973b).PubMedGoogle Scholar
  87. LADO, P., SCHWENDIMANN, M.: The effect of actinomycin on RNA synthesis and phosphate uptake in isolated castor bean cotyledons. A tentative evaluation of the half-lives of mRNAs for some enzymes. Ital. J. Biochem. 18, 138–153 (1969).PubMedGoogle Scholar
  88. LEIVE, L.: Actinomycin sensitivity in E. coli. Biochem. biophys. Res. Commun. 18, 13–17 (1965a).PubMedGoogle Scholar
  89. LEIVE, L.: A nonspecific increase in permeability in E. coli produced by EDTA. Proc. nat. Acad. Sci. (Wash.) 53, 745–750 (1965b).Google Scholar
  90. LEIVE, L.: RNA degradation and the assembly of ribosomes in actinomycin treated E. coli. J. molec. Biol. 13, 862–875 (1965c).Google Scholar
  91. LERMAN, L.S.: Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 18–30 (1961).Google Scholar
  92. LEVY, H.B.: Effect of actinomycin D on HeLa cell nuclear RNA metabolism. Proc. Soc. exp. Biol. (N,Y.) 113, 886–889 (1963).Google Scholar
  93. LIERSCH, M., HARTMANN, G.: Die Bindung von Proflavin und Actinomycin an Desoxyribonucleinsäure. II. Die Bindung an denaturierte und einsträngige DNA, Apyrimidinsäure and Apurinsäure. Biochem. Z. 343, 16–28 (1965).PubMedGoogle Scholar
  94. LOH, P.C., SOERGEL, M.: Growth characteristics of reovirus type 2: actinomycin and the synthesis of viral RNA. Proc. nat. Acad. Sci. (Wash.) 54, 857–863 (1965).Google Scholar
  95. LUNT, M.R., SINSHEIMER, R.L.: Inhibition of ribonucleic acid bacteriophage growth by actinomycin D. J. molec. Biol. 18, 541–546 (1966).PubMedGoogle Scholar
  96. MACH, B., TATUM, E.L.: Ribonucleic acid synthesis in protoplasts of E. coli: Inhibition by actinomycin D. Science 139, 1051–1052 (1963).Google Scholar
  97. MAITRA, U., NAKATA, Y., HURWITZ, J.: The role of deoxyribonucleic acid in ribonucleic acid synthesis. XIV. A study of the initiation of ribonucleic acid synthesis. J. biol. Chem. 242, 4908–4918 (1967).PubMedGoogle Scholar
  98. MCOY, E.E., EBADI, M.: The paradoxical effect of hydrocortisone and actinomycin on the activity of rabbit leucocyte alkaline phosphatase. Biochem. biophys. Res. Commun. 26, 265–271 (1967).Google Scholar
  99. MCDONNELL, J., GARAPIN, A.C., LEVINSON, W.E., QUINTRELL, N., FANSHIER, L., BISHOP, J.M.: DNA polymerases of Rous sarcoma virus: delineation of two reactions with actinomycin. Nature 228, 433–435 (1970).PubMedGoogle Scholar
  100. MERITS, I.: Actinomycin inhibition of RNA synthesis in rat liver. Biochem. biophys. Res. Commun. 10, 254–259 (1963).PubMedGoogle Scholar
  101. MERITS, I.: Actinomycin inhibition of soluble ribonucleic acid synthesis in rat liver. Biochim. biophys. Acta (Amst.) 108, 578–582 (1965).Google Scholar
  102. MOOG, F.: Intestinal phosphatase activity: acceleration of increase by puromycin and actinomycin. Science 144, 414–416 (1964).PubMedGoogle Scholar
  103. MOOG, F.: Acceleration of the normal and corticoid-induced increase of alkaline phosphatase in the duodenum of the nursling mouse by actinomycin D, puromycin, colchicine and ethionine. Advan. Enzyme Reg. 13, 221–236 (1965).Google Scholar
  104. MOSES, V., SHARP, P.B.: Effect of actinomycin on the synthesis of macromolecules in E. coli. Biochim. biophys. Acta (Amst.) 119, 200–203 (1966).Google Scholar
  105. MÜLLER, W., CROTHERS, D.M.: Studies of the binding of actinomycin and related compounds to DNA. J. molec. Biol. 35, 251–29o (1968).PubMedGoogle Scholar
  106. MÜLLER, W., EMME, I.: Zum Verhalten der Actinomycine in wässrigen Lösungen. Z. Naturforsch. 206, 835–841 (1965).Google Scholar
  107. MÜLLER, W., SPATZ, H.C.: Über die Struktur des Actinomycin-Desoxyguanosin-Komplexes. Z. Naturforsch. 206, 842–853 (1965).Google Scholar
  108. NAKATA, A., SEKIGUCHI, M., KAWAMATA, J.: Inhibition of multiplication of bacteriophage by actinomycin. Nature J 89, 246–247 (1961).Google Scholar
  109. NITOWSKY, H., GELLER, S., CASPER, R.: Effects’of actinomycin on induction of alkaline phosphate in heteroploia cell cultures. Fed. Proc. 23, 556 (1964).Google Scholar
  110. NITTA, K.: Studies on the effects of actinomycetes products on the culture of human carcinoma cells (strain HeLa). II. The effect of known antitumour antibiotics on HeLa cells. Jap. J. med. Sci. 10, 287–296 (1957).Google Scholar
  111. OETTEL, H., WILHELM, G.: Vergleichende Prüfungen von 14 cytostatisch wirksamen Produkten an 7 Tiertumoren. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 230, 559–593 (1957).Google Scholar
  112. O’MALLEY, B.W.: In vitro hormonal induction of a specific protein (avidin) in chick oviduct. Biochemistry 2546–2551 (1967).Google Scholar
  113. PAPACONSTÄNTINOU, J., STEWART, J.A., KOEHN, P.V.: A localized Stimulation of lens protein synthesis by actinomycin D. Biochim. biophys Acta (Amst.) 114, 428–430 (1966).Google Scholar
  114. PERRY, R.P.: The cellular sites of synthesis of ribosomal and 4S RNA. Proc. nat. Acad. Sci. (Wash.) 48, 2179–2186 (1963).Google Scholar
  115. POLLOCK, M.R.: The differential effect of actinomycin D on the biosynthesis of enzymes in Bacillus subtilis and Bacillus cereus. Biochim. biophys. Acta (Amst.) 76, 80–93 (1963).Google Scholar
  116. PULLMAN, B.: On the complexes of actinomycin with purines and deoxyribonucleic acid. Biochim. biophys. Acta (Amst.) 88, 440–441 (1964)Google Scholar
  117. REICH, E., CERAMI, A., WARD, D.C.: Actinomycin. In: Antibiotics, Vol. 1 Mechanism of Action (D. GOTTLIEB, P.D. SHAW, Eds.), pp. 714–725. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  118. REICH, E., FRANKLIN, R.M., SHATKIN, A.J., TATUM, E.L.: Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 131 556–557 (1961).Google Scholar
  119. REICH, E., GOLDBERG, I.H.: Actinomycin and nucleic acid function. Progr. Nucl. Acid. Res. 3, 183–234 (1964).Google Scholar
  120. RICHARDSON, J.P.: Enzymic synthesis of RNA from T7 DNA. J. molec. Biol. J21, 115–127 (1966a).Google Scholar
  121. RICHARDSON, J.P.: The binding of RNA polymerase to DNA. J. molec. Biol. 11, 83–114 (1966b).Google Scholar
  122. RINGERTZ, N.R., BOLUND, L.: Actinomycin binding capacity of deoxyribonucleoprotein. Biochim. biophys. Acta (Amst.) 174, 147–154 (1969).Google Scholar
  123. ROBERTS, W.K., NEWMAN, J.F.E.: Use of low concentrations of actinomycin D in the study of RNA synthesis in Ehrlich ascites cells. J. molec. Biol. 20, 63–73 (1966).PubMedGoogle Scholar
  124. ROBINSON, H.J., WAKSMAN, S.A.: Studies on the toxicity of actinomycin J. Pharmacol, exp. Ther. 74, 25–32 (1942).Google Scholar
  125. ROSEN, F., RAINA, P.N., MILHOLLAND, R.J., NICHOL, C.A.: Induction of several adaptive enzymes by actinomycin D. Science 146, 661–663 (1964).PubMedGoogle Scholar
  126. SALZMAN, N.P., SHATKIN, A.J., SEBRING, E.D.: The synthesis of a DNA-like RNA in the cytoplasm of HeLa cells infected with vaccina virus. J. molec. Biol. 8, 405–416 (1964).PubMedGoogle Scholar
  127. SARMA, D.S.R., REID, I.M., SIDRANSKY, H.: The selective effect of actinomycin D on free polyribosomes of mouse liver. Biochem. biophys, Res. Commun., 36, 582–588 (1969).Google Scholar
  128. SAUER, G., MÜNK, K.: Interference of actinomycin D with the replication of the DNA of herpes virus. II. Relationship between yield of virus and time of actinomycin treatment. Biochim. biophys. Acta (Amst.) 119, 341–346 (1966).Google Scholar
  129. SAUER, G., ORTH, H.D., MÜNK, K.: Interference of actinomycin D with the replication of the herpes virus DNA. I. Difference in behaviour of cellular and viral nucleic acid synthesis following treatment with actinomycin D. Biochim. biophys. Acta (Amst.) 119, 331–340 (1966).Google Scholar
  130. SCARANO, E., De PETROCELLIS, B., AUGUSTI-TOCCO, G.: Studies on the control of enzyme synthesis during the early embryonic development of the sea urchins. Biochim. biophys. Abta (Amst.) 87, 174–176 (1964).Google Scholar
  131. SCHARA, R., MÜLLER, W.: über die Wechselwirkung des Actinomycin C3 mit Mono-, Di- und Oligonucleotiden. Europ. J. Biochem. 29, 210 bis 216 (1972).Google Scholar
  132. SCHMIDT-KASTNER, G.: Actinomycin E und Actinomycin F, zwei neue biosynthetische Actinomycingemische. Naturwissenschaften 43, 131–132 (1956).Google Scholar
  133. SCHOLTISSEK, C.: Unphysiological breakdown of fast-labelled RNA by actinomycin D in primary chick fibroblasts. Europ. J. Biochem. 28, 70–73 (1972).PubMedGoogle Scholar
  134. SEKIGUCHI, M., IIDA, S.: Mutants of E. coli permeable to actinomycin. Proc. nat. Acad. Sci. (Wash.) 58, 2315–2320 (1967).Google Scholar
  135. SHATKIN, A.J.: Actinomycin inhibition of ribonucleic acid synthesis and poliovirus infection of HeLa cells. Biochim. biophys. Acta (Amst.) 61, 310–313 (1962).Google Scholar
  136. SHATKIN, A.J.: Actinomycin and the differential synthesis of reovirus and L cell RNA. Biochem. biophys. Res. Commun. 19, 506–510 (1965).PubMedGoogle Scholar
  137. SLOTNICK, I.J.: Disproportionate production of DNA in Bacillus subtilis inhibited by actinomycin D. Bact. Proc. 59, 130–131 (1959).Google Scholar
  138. SOBELL, H.M.: The stereochemistry of actinomycin binding to DNA and its implications in molecular biology. Progr. Nucl. Acid Res. molec. Biol. 13, 153–190 (1973).Google Scholar
  139. SOBELL, H.M., JAIN, S.C.: Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J. molec. Biol. 68, 21–34 (1972).PubMedGoogle Scholar
  140. SOBELL, H.M., JAIN, S.C., SAKORE, T.D., NORDMAN, C.E.: Stereochemistry of actinomycin-DNA binding to DNA through formation of crystalline complex. Nature New Biology 231, 200–205 (1971a).PubMedGoogle Scholar
  141. SOBELL, H.M., JAIN, S.C., SAKORE, T.D., PONTICELLO, G., NORDMAN, C.E.: Concerning the stereochemistry of actinomycin binding to DNA: An actinomycin-deoxyguanosine crystalline complex. Cold Spr. Harb. Symp. quant. Biol. 36, 263–270 (1971b).Google Scholar
  142. SPIEGELMAN, S., BURNY, A., DAS, M.R., KEYDAR, J., SCHLOM, J., TRAVNICEK, M., WATSON, K.: DNA-directed DNA polymerase activity in oncogenic RNA viruses. Nature 227, 1029–1031 (1970).PubMedGoogle Scholar
  143. STAEHELIN, T., WETTSTEIN, F.O., NOLL, H.: Breakdown of rat liver ergosomes in vivo after actinomycin inhibition of mRNA synthesis. Science 140, 180–183 (1963).PubMedGoogle Scholar
  144. STRECKER, H.J., ELIASSON, E.E.: Ornithine transaminase activity during the growth cycle of Chang’s liver cells. J. biol. Chem. 241, 5750–5756 (1966).PubMedGoogle Scholar
  145. SUEOKA, N.: Variation and heterogeneity of base composition of deoxyribonucleic acids: a compilation of old and new data. J. molec. Biol. 3, 31–40 (1961).Google Scholar
  146. TAMAOKI, T., MUELLER, G.C.: Synthesis of nuclear and cytoplasmic RNA of HeLa cells and the effect of actinomycin D. Biochem. biophys. Res. Commun. 9, 451–454 (1962).PubMedGoogle Scholar
  147. TANNENBERG, W.J.K., SCHWARTZ, R.S.: Modification of the immune response by actinomycin. In: Actinomycin (S.A. WAKSMAN, Ed.), pp. 163–179. New York-London-Sydney: Wiley 1968.Google Scholar
  148. TEMIN, H.M.: The effects of actinomycin D on growth of Rous sarcoma virus in vitro. Virology 20, 577–582 (1963).PubMedGoogle Scholar
  149. TEMIN, H.M., MIZUTANI, S.: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213 (1970).PubMedGoogle Scholar
  150. THOMPSON, E.B., GRANNER, D.K., TOMKINS, G.M.: Superinduction of tyrosine aminotransferase by actinomycin D in rat hepatoma (HTC) cells. J. molec. Biol. 51, 159–175 (1970).Google Scholar
  151. WAKSMAN, S.A., WOODRUFF, H.B.: Bacteriostatic and bactericidal substances produced by a soil Actinomyces. Proc. Soc. exp. Biol. (N.Y.) 45, 609–614 (1940).Google Scholar
  152. WEISSBACH, H., KATZ, E.: Studies on the biosynthesis of actinomycin: Enzymic synthesis of the phenoxazone chromophore. J. biol. Chem. 236, PC16-PC18 (1961).PubMedGoogle Scholar
  153. WEISSBACH, H., REDFIELD, B., BEAVEN, V., KATZ, E.: A4-Methyl-3-hydro~ xyanthranilic acid, an intermediate in actinomycin biosynthesis. Biochem. biophys. Res. Commun. 119, 524–530 (1965).Google Scholar
  154. WELLS, R.D.: Actinomycin binding to DNA: Inability of a DNA-containing guanine to bind actinomycin D. Science 165, 75–76 (1969).PubMedGoogle Scholar
  155. WELLS, R.D., LARSON, J.E.: Studies on the binding of actinomycin D to DNA and DNA model polymers. J. molec. Biol. 45, 319–342 (1970).Google Scholar
  156. YAMAOKA, K., ZIFFER, H.: The optical properties of actinomycin D. II. Optical activity of the deoxyribonucleic acid complex. Biochemistry 7, 1001–1008 (1968).PubMedGoogle Scholar
  157. ZIFFER, H., YAMAOKA, K., MAUGER, A.B.: Optical properties of actinomycin D. I. Influence of the lactone rings on its optical activity. Biochemistry 1, 996–1001 (1968).Google Scholar
  158. ZIPPER, P., KRATKY, O., BUNEMANN, H., MILLER, W.: A small-angle X-ray scattering study on the interaction of actinomycin C3 with deoxyribonucleic acid from calf thymus. FEBS Letters 25, 123–126 (1972).PubMedGoogle Scholar

B. Anthracyclines

  1. AKASAKA, K., SAKODA, M., HIROMI, K.: Kinetic studies on acridine or- ange-DNA interaction by fluorescence stopped-flow method. Biochem. biophys. Res. Commun. 40, 1239–1245 (1970).PubMedGoogle Scholar
  2. AKTIPIS, S., KINDELIS, A.: Optical properties of the deoxyribonucleic acid-ethidium bromide complex. Effect of salt. Biochemistry 12, 1213–1221 (1973).PubMedGoogle Scholar
  3. ANGIULI, R., FORESTI, E., RIVA DI SANSEVERINO, L., ISAACS, N.W., KENNARD, O., MOTHERWELL, W.D.S., WAMPLER, D.L., ARCAMONE, F.: Structure of daunomycin; X-ray analysis of N-Br-acetyl-daunomycin solvate. Nature New Biology 234, 78–80 (1971).PubMedGoogle Scholar
  4. ARCAMONE, F., FRANCESCHI, G., OREZZI, P., CASSINELLI, G., BARBIERI, W., MONDELLI, R.: Daunomycin. I. The structure of daunomycinone. J. Amer. chem. Soc. 86, 5334–5335 (1964a).Google Scholar
  5. ARCAMONE, F., CASSINELLI, G., OREZZI, P., FRANCESCHI, G., MONDELLI, R.: Daunomycin. II. The structure and stereochemistry of daunosamine. J. Amer. chem. Soc. 86, 5335–5336 (1964b).Google Scholar
  6. ARCAMONE, F., FRANCESCHI, G., PENCO, S., SELVA, A.: Adriamycin (14- hydroxy daunorubicin) a novel antitumour antibiotic. Tetrahedron Letters pp. 1007–1010 (1969).Google Scholar
  7. BARTHELEMY-CLAVEY, V., MAURIZOT, J.-C., SICARD, P.J.: Etude spectro- photometrique du complexe DNA-daunorubicine. Biochimie 55, 859–868 (1973).PubMedGoogle Scholar
  8. BAUER, W., VINOGRAD, J.: The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV 4o DNA in the presence and absence of dye. J. molec. Biol. 33, 141–171 (1968).PubMedGoogle Scholar
  9. BAUER, W., VINOGRAD, J.: The interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation, in SV 40 DNA. J. molec. Biol. 147, 419–435 (1970).Google Scholar
  10. BAUER, W., VINOGRAD, J.: The use of intercalative dyes in the study of closed circular DNA. In: Progr. molec. subcell. Biol. (F.E. HAHN, Ed.), Vol. 2, pp. 181–215. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  11. BHUYAN, B.K.: Phleomycin, xanthomycin, streptonigrin, nogalamycin and aurantin. In: D. GOTTLIEB, P.D. SHAW (Eds.): Antibiotics, Vol. I: Mechanism of Action, pp. 173–180. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  12. BHUYAN, B.K., DIETZ, A.D.: Fermentation, taxonomic and biological studies of nogalamycin. Antimicrob. Agents and Chemother. 1965, 836–844 (1965).Google Scholar
  13. BHUYAN, B.K., REUSSER, F.: Comparative biological activity of nogalamycin and its analogs. Cancer Res. 30, 984–989 (1970).PubMedGoogle Scholar
  14. BHUYAN, B.K., SMITH, C.G.: Differential interaction of nogalamycin with DNA of varying base composition. Proc. nat. Acad. Sci. (Wash.) 54, 566–572 (1965).Google Scholar
  15. BITTMANN, R.: Studies of the binding of ethidium bromide to transfer ribonucleic acid: absorption, fluorescence, ultracentrifugation and kinetic investigations. J. molec. Biol. 46, 251–268 (1969).Google Scholar
  16. BLAKE, A., PEACOCKE, A.R.: The interaction of aminoacridines with nucleic acids. Biopolymers 1L, 1225–1253 (1968).Google Scholar
  17. BORISOVA, O.F., MINYAT, E.E.: Complexes of deoxynucleoprotein with acridine orange dye. Mol. Biol. SSSRJ., 758–767 (1969).Google Scholar
  18. BRADLEY, D.F., LIFSON, S.: Statistical mechanical analysis of binding of acridines to DNA. In: B. PULLMAN (Ed.): Molecular Association in Biology, pp. 261–270. New York-London: Academic Press 1968.Google Scholar
  19. BRADLEY, D.F., WOLF, M.K.: Aggregation of dyes bound to polyanions. Proc. nat. Acad. Sci. (Wash.) 45, 944–952 (1959).Google Scholar
  20. BRAZHNIKOVA, M.G., ZBARSKY, V.B., KUDINOVA, M.-K., MURAVIEVA, L.I., PONAMARENKO, V.I., POTAPOVA, N.P.: Carminomycin, a new antitumor anthracycline. Antibiotiki 18 678–681 (1973a).PubMedGoogle Scholar
  21. BRAZHNIKOVA, M.G., ZBARSKY, V.B., POTAPOVA, N.P., SHEINKER, Yu.N., VLASOVA, T.F., ROZYNOV, B.V.: Structure of aglycone of carminomycin, an antitumour antibiotic. Antibiotiki 18, 1059–1063 (1973b).Google Scholar
  22. BREMERSKOV, V., LINNEMANN, R.: Some effects of daunomycin on the nucleic acid synthesis in synchronized L-cells. Europ. J. Cancer 5, 317–330 (1969).Google Scholar
  23. BROCKMANN, H., BOLDT, P., NIEMEYER, J.: Beta-rhodomycinon and gammarhodomycinon. Chem. Ber. 16, 1356–1372 (1963).Google Scholar
  24. CALENDI, E., DMARCO, A., REGGIANI, M., SCARPINATO, B., VALENTINI, L.: On physico-chemical interactions between daunomycin and nucleic acids. Biochim. biophys. Acta (Amst.) 103, 25–49 (1965).Google Scholar
  25. CANTOR, C.R., BEARDSLEY, K., NELSON, J., TAO, T., CHIN, K.W.: Studies on tRNA structure using covalently and noncovalently bound fluorescent dyes. In: Progr. molec. subcell. Biol. (F.E. HAHN, Ed.), Vol.2, pp. 297–315. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  26. CHAN, E.W., BALL, J.K.: Interaction of DNA with three dimethyl derivatives of benz(c)acridines. Biochim. biophys. Acta (Amst.) 238, 31–45 (1971).Google Scholar
  27. CHURCHICH, J.E.: Fluorescence studies on soluble ribonucleic acid labelled with acriflavine. Biochim. biophys. Acta (Amst.) 75, 274–276 (1963).Google Scholar
  28. COHEN, G., EISENBERG, H.: Viscosity and sedimentation study of sonicated DNA-proflavine complexes. Biopolymers 8, 45–56 (1969).Google Scholar
  29. COHEN, A., HARLEY, E.H., REES, K.R.: Antiviral effect of daunomycin. Nature 222, 36–38 (1969).PubMedGoogle Scholar
  30. CRAWFORD, L.V., WARING, M.J.: Supercoiling of polyoma virus DNA measured by its interaction with ethidium bromide. J. molec. Biol. 25, 23–30 (1967).PubMedGoogle Scholar
  31. CROOK, L.E., REES, K.R., COHEN, A.: Effect of daunomycin on HeLa cell nucleic acid synthesis. Biochem. Pharmacol. 21, 281–286 (1972).PubMedGoogle Scholar
  32. DALGLEISH, D.G., FEY, G., KERSTEN, W.: Circular dichroism spectroscopy of complexes of the antibiotics daunomycin, nogalamycin, chromomycin and mithramycin with DNA. Submitted for publication 1973.Google Scholar
  33. DANO, K.: Development of resistance to adriamycin (NSC-123127) in Ehrlich ascites tumor in vivo. Cancer Chemother. Rep. Pt. 156, 321–326 (1972).Google Scholar
  34. Di MARCO, A.: Daunomycin and related antibiotics. In: D. GOTTLIEB, P.D. SHAW (Eds.): Antibiotics, Vol. I: Mechanism of Action, pp. 190 to 210. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  35. Di MARCO, A., SILVESTRINI, R., Di MARCO, S., DASDIA, T.: Inhibiting effect of the new cytotoxic antibiotic, daunomycin, on nucleic acids and mitotic activity of HeLa cells. J. Cell Biol. 27, 545–550 (1965).PubMedGoogle Scholar
  36. DUBOST, M., GANTER, P., MARAL, R., NINET, L., PINNERT, S., PRENDHOMME, J., WERNER, G.-H.: Rubidomycin: a new antibiotic with cytostatic properties. Cancer Chemother. Rep. 151, 35–36 (1964).Google Scholar
  37. DOSKOÔIL, J., FRIÔ, I.: Complex formation of daunomycin with double- stranded RNA. FEBS Letters 31, 55–58 (1973).Google Scholar
  38. DOURLENT, M., HÉLÈNE, C.: A quantitative analysis of proflavine binding to polyadenylic acid, polyuridylic acid, and transfer RNA. Europ. J. Biochem. 23, 86–95 (1971).PubMedGoogle Scholar
  39. DUBOST, M., GANTER, P., MARAL, R., NINET, L., PINNERT, S., PREUDHOMME, J., WERNER, G.-H.: Rubidomycin: a new antibiotic with cytostatic properties. Cancer Chemother. Rep. 41, 35–36 (1964).PubMedGoogle Scholar
  40. ELLEM, K.A.O., RHODE III, S.L.: Selective inhibition of ribosomal RNA synthesis in HeLa cells by nogalamycin, a dA:dT binding antibiotic. Biochem. biophys. Acta (Amst.) 109, 415–424 (1970).Google Scholar
  41. ETTLINGER, L., GÂUMANN, E., HÎÎTTÉR, R., KELLERSCHIERLEIN, W., KRADOLFER, F., NEIPP, L., PRELOG, V., REUSSER, P., ZÂHNER, H.: Stoffwech- selprodukte von Actinomyceten. XVI. Cinerubine. Chem. Ber. 92, 1867–1879 (1959).Google Scholar
  42. EVANS, I., LINSTEAD, D., RHODES, P.M., WILKIE, D.: Inhibition of RNA synthesis in mitochondria by daunomycin. Biochim. biophys. Acta 312, 323–326 (1973).PubMedGoogle Scholar
  43. FELSTED, R.L., GEE, M., BACHUR, N.R.: Rat liver daunorubicin reductase an aldo-keto reductase. J. biol. Chem. 249, 3672–3679 (1974)PubMedGoogle Scholar
  44. FEY, G.: Circulardichrographische Untersuchungen an DNA-Antibiotika-Komplexen. Diss. Nat.Fak. Erlangen-Niirnberg 1973.Google Scholar
  45. FINKELSTEIN, T., WEINSTEIN, I.B.: Proflavine binding to transfer ribonucleic acid, synthetic ribonucleic acids, and deoxyribonucleic acid. J. Biol. Chem. 242, 3763–3768 (1967).PubMedGoogle Scholar
  46. FULLER W. WARING, M.J.: Molecular mode for the interaction of ethidium bromide with deoxyribonucleic acid. Ber. Bunsengesellsch. Phys. Chem. 68, 805–808 (1964).Google Scholar
  47. GAUE, G.F., SVESHNIKOVA, M.A., UKHOLINA, R.S., GAVRILINA, G.V., FILICHEVA, V.A., GLADKIKH, E.G.: Production of antitumor antibiotic carminomycin by Actinomadura carminate sp. nov. Antibiotiki 18, 675–678 (1973).Google Scholar
  48. GRAY, G.D., CAMIENER, G.W., BHUYAN, B.K.: Nogalamycin effects in rat liver: Inhibition of tryptophan pyrrolase induction and nucleic acid biosynthesis. Cancer Res. 26, 2419–2424 (1966).PubMedGoogle Scholar
  49. GREIN, A., SPALLA, C., DMARCO, A., CANEVAZZI, G.: Descrizione e classificazione di un attinomicete (Streptomyces peucetius sp. nova) produttore di una sostanze ad attività antitumorale: la daunomycina. Giorn. Microbiol. 11, 109–118 (1963).Google Scholar
  50. GROSJEAN, H., WÊRENNE, J., CHANTRENNE, H.: The binding of proflavine to transfer ribonucleic acid: Dependence on secondary structure. Biochim. biophys. Acta 166, 616–627 (1968).PubMedGoogle Scholar
  51. HAHN, F.E. (Ed.): Complexes of biological active substances with nucleic acids and their modes of action. Progr. molec. subcell. Biol., Vol. 2. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  52. HULTIN, T.: Effects of aminoacridines and related compounds on the conformation of rat liver ribosomes. Chem.-Biol. Interactions 2, 61–77 (1970).Google Scholar
  53. INAGAKI, A., KAGEYAMA, M.: Interaction of antibiotics with deoxyribonucleic acid. II. DNA-cellulose chromatography of antibiotics and related compounds. J. Biochem. 68, 187–192 (1970).PubMedGoogle Scholar
  54. IWAMOTO, R.H., LIM, P., BHACCA, N.S.: The structure of daunomycin. Tetrahedron Letters 3891–3894 (1968).Google Scholar
  55. KELLER-SCHIERLEIN, W., RICHLE, W.: Metabolic products of microorganisms. LXXXVI. Structure of cinerubine A. Antimicr. Agents Chemother. 410, 68–77 (1970).Google Scholar
  56. KERSTEN, H., KERSTEN, W.: The failure of bacteria to control nucleic acid metabolism in the presence of sublethal doses of antibiotics. Proc. Congr. on Antibiotics, Prague 1964 (H. MILOS, G. ZDENEK, Eds.) pp. 645–650. London: Butterworths 1966.Google Scholar
  57. KERSTEN, W., KERSTEN, H.: Die Bindung von Daunomycin, Cinerubin und Chromomycin A3 an Nucleinsäuren. Biochem. Z. 341, 174–183 (1965).PubMedGoogle Scholar
  58. KERSTEN, W., KERSTEN, H.: Reaktionen verschiedener Antibiotika mit Nukleinsäuren und ihre Wirkung auf den Nukleinsäurestoffwechsel. Int. Symp. über Wirkungsmechanismen von Fungiziden und Antibiotika, S. 177–196. Berlin: Academie-Verlag 1967.Google Scholar
  59. KERSTEN, W., KERSTEN, H.: Interaction of antibiotics with nucleic acids. In: B. PULLMAN (Ed.): Molecular Associations in Biology, pp. 289–298. New York-London: Academic Press 1968.Google Scholar
  60. KERSTEN, W., KERSTEN, H., SZYBALSKI, W.: Physicochemical properties of complexes between deoxyribonucleic acid and antibiotics which affect ribonucleic synthesis (actinomycin, daunomycin, cinerubine, nogalamycin, chromomycin, mithramycin and olivomycin). Biochemistry 5, 236–244 (1966).PubMedGoogle Scholar
  61. KIM, J.H., GELBARD, A.S., DJORDJEVIC, B., KIM, S.H., PEREZ, A.G.: Action of daunomycin on the nucleic acid metabolism and viability of HeLa cells. Cancer Res. 28, 2437–2442 (1968).PubMedGoogle Scholar
  62. KOSCHEL, K., HARTMANN, G., KERSTEN, W., KERSTEN, H.: Die Wirkung des Chromomycins und einiger Anthracyclinantibiotika auf die DNA-abhängige Nukleinsäure-Synthese. Biochem. Z. 344, 76–86 (1966).Google Scholar
  63. LERMAN, L.: Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 18–30 (1961).Google Scholar
  64. LERMAN, L.S.: The structure of the DNA-acridine complex. Proc. nat. Acad. Sci. (Wash.) 49, 94–102 (1963).Google Scholar
  65. LERMAN, L.S.: Acridine mutagens and DNA structure. J. cell. comp. Physiol. 61, Suppl. 1–18 (1964).Google Scholar
  66. LI, H.J., CROTHERS, D.M.: Relaxation studies of the proflavine-DNA complex: the kinetics of an intercalation reaction. J. molec. Biol. 39, 461–477 (1969).PubMedGoogle Scholar
  67. LÖBER, G.: Acridine, ihre physikochemische und biochemische Bedeutung Z. Chem. 4, 92–102, 135–145 (1971).Google Scholar
  68. LURQUIN, P., BUCHET-MAHIEU, J.: Biological activity of ethidium bromide-transfer RNA complexes. FEBS Letters 12, 244–248 (1971).PubMedGoogle Scholar
  69. MITSCHER, L.A., McCRAE, W., ANDRES, W.W., LOWERY, J.A., BOHONOS, N.: Ruticulomycins, new anthracycline antibiotics. J. pharm. Sci. 53, 1139–114o (1964).PubMedGoogle Scholar
  70. NASS, M.M.K.: Differential effects of ethidium bromide on mitochrondrial and nuclear DNA synthesis in vivo in cultured mammalian cells Exp. Cell Res. 72, 211–222 (1972).PubMedGoogle Scholar
  71. NEWTON, B.A.: The mode of action of phenanthridines: the effect of ethidium bromide on cell division and nucleic acid synthesis. J. gen. Microbiol. 17, 718–730 (1957).PubMedGoogle Scholar
  72. OSTERTAG, W., KERSTEN, W.: The action of proflavine and actinomycin D in causing chromatid breakage in human cells. Exp. Cell Res. 39, 296–301 (1965).PubMedGoogle Scholar
  73. PAOLETTI, J., Le PECQ, J.B.: Resonance energy transfer between ethidium bromide molecules bound to nucleic acids. Does intercalation wind or unwind the DNA helix?. J. molec. Biol. 159, 43–62 (1971).Google Scholar
  74. PARISI, B., SOLLER, A.: Studies on the antiphage activity of daunomycin. Giorn. Microbiol. 12, 183–194 (1964).Google Scholar
  75. PIGRAM, W.J., FULLER, W., HAMILTON, L.D.: Stereochemistry of intercalation: interaction of daunomycin with DNA. Nature New Biology 235, 17–19 (1972).PubMedGoogle Scholar
  76. PULLMAN, B. (Ed.): Molecular association in biology. New York-London: Academic Press 1968.Google Scholar
  77. REVEL, M., HIATT, H.H.: The stability of liver messenger RNA. Proc. nat. Acad. Sci. (Wash.) J51, 810–818 (1964).Google Scholar
  78. RINGERTZ, N.R., BOLUND, L., Dar ZYNKIEWICZ, Z.: AO binding of intracellular nucleic acids in fixed cells in relation to cell growth. Exp. Cell Res. 63, 233–238 (1970).PubMedGoogle Scholar
  79. ROTH, D., MANJON, M.L.: Studies of a specific association between acriflavine and DNA in intact cells. Biopolymers 7, 695–706 (1969).PubMedGoogle Scholar
  80. RUSCONI, A.: Different binding sites in DNA for actinomycin and daunomycin. Biochim. biophys. Acta (Amst.) 123, 627–630 (1966).Google Scholar
  81. RUSCONI, A., Di MARCO, A.: Inhibition of nucleic acid synthesis by daunomycin and its relationship to the uptake of the drug into HeLa cells. Cancer Res. 29, 1507–1511 (1969).PubMedGoogle Scholar
  82. SAKODA, M., HIROMI, K., AKASAKA, K.: Kinetic studies on acridine orange-DNA interaction. A branched mechanism involving intercalation and outside “dimerization”. J. Biochem. 71, 891–896 (1972).PubMedGoogle Scholar
  83. SILVESTRINI, R., Di MARCO, A., DASDIA, T.: Interference of daunomycin with metabolic events of the cell cycle in synchronized culture of rat fibroblasts. Cancer Res. 10, 966–973 (1970).Google Scholar
  84. STEINERT, M., Van ASSEL, S., STEINERT, G.: Étude, par autoradiographie, des effects du bromure dfêthidium sur la synthèse des acides nucléiques de Crithidia luciliae. Exp. Cell. Res. 56, 69–74 (1969).PubMedGoogle Scholar
  85. SUZUKI, T.: The structure of an antibiotic B-58941. Bull. chem. Soc. Jap. 43, 292 (1970).Google Scholar
  86. TABACZYNSKl, M., SHELDRICK, P., SZYBALSKI, W.: Comparison of the mutagenic properties of the acridine dyes and of other “intercalating” agents, including ethidium bromide and the anthracycline antibiotics (einerubin, daunomycin and nogalamycin). Microbial Genetics Bull. 23, 7–8. (1965).Google Scholar
  87. TOMCHICK, R., MANDEL, H.G.: Biochemical effects of ethidium bromide in microorganisms. J. gen. Microbiol. 36, 225–236 (1964).PubMedGoogle Scholar
  88. TRITTON, T.R., MOHR, S.C.: Relaxation kinetics of the binding of ethidium bromide to unfractionated yeast tRNA at low dye-phosphate ratio. Biochem. biophys. Res. Commun. 45, 1240–1249 (1971).PubMedGoogle Scholar
  89. TRITTON, T.R., MOHR, S.C.: Kinetics of ethidium bromide binding as a probe of transfer ribonucleic acid structure. Biochemistry 12, 905–914 (1973).PubMedGoogle Scholar
  90. TROUET, A., DEPREZ- de CAMPENEERE, D., de DUVE, C.: Chemotherapy through lysosomes with a DNA-daunorubicin complex. Nature New Biology 239, 110–112 (1972).PubMedGoogle Scholar
  91. ULLMAN, R.: Intri-nsic viscosity of wormlike polymer chains. J. chem. Phys. 49, 5486–5497 (1968).PubMedGoogle Scholar
  92. URBANKE, C., RÖMER, R., MAASS, G.: The binding of ethidium bromide to different conformations of tRNA. Unfolding of tertiary structure. Europ. J. Biochem. 33 511–516 (1973).PubMedGoogle Scholar
  93. WARING, M.J.: The effects of antimicrobial agents on ribonucleic acid polymerase. Molec. Pharmacol. 1–13 (1965).Google Scholar
  94. WARING, M.J.: Structural requirements for the binding of ethidium to nucleic acids. Biochim. biophys. Acta (Amst.) 114, 234–244 (1966).Google Scholar
  95. WARING, M.J.: Intercalation into DNA. Naunyn-Schmiedebergs Arch. Pharmakol. 259, 91–97 (1968).Google Scholar
  96. WARING, M.J.: Variation of the supercoils in closed circular DNA by binding ov antibiotics and drugs: evidence for molecular models involving intercalation. J. molec. Biol. 54, 247–279 (1970).PubMedGoogle Scholar
  97. WARING, M.J.: Binding of drugs to supercoiled circular DNA: evidence for and against intercalation. In: F.E. HAHN (Ed.): Progr. molec. subcell. Biol., Vol. 2, pp. 216–231. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  98. WILEY, P.P., MacKELLER, F.A., CARON, E.L., KELLY, R.B.: Isolation, characterization and degradation of nogalamycin. Tetrahedron Letters 663–668 (1968).Google Scholar
  99. ZUNINO, F.: Studies on the mode of interaction of daunomycin with DNA. FEBS Letters J 8, 249–253 (1971).Google Scholar

C. Chromomycin, Olivomycin and Mithramycin

  1. BAKHAEVA, G.P., BERLIN, Y.A., BOLDYREVA, E.F., CHUPRUNOVA, O.A., KOLOSOV, M.N., SOIFER, V.S., VASILJEVA, T.E., YARTSEVA, I.V.: The structure of aureolic acid (mithramycin). Tetrahedron Letters 3595–3598 (.1968).Google Scholar
  2. BEHR, W., HARTMANN, G.: Spektralphotometrische Untersuchungen über die Wechselwirkungen zwischen Chromomycin A3 und Nukleinsäuren. Biochem. Z. 143, 519–527 (1965).Google Scholar
  3. BEHR, W., HONIKEL, K., HARTMANN, G.: Interaction of the RNA polymerase inhibitor chromomycin with DNA. Europ. J. Biochem. 91 82–92 (1969).Google Scholar
  4. BERLIN, Y.A., ESIPOV, S.E., KOLOSOV, M.N., SHEMYAKIN, M.M.: The struc ture of olivomycin. Tetrahedron Letters 1431–1436 (1966).Google Scholar
  5. BRAZHNIKOVA, M.G., KRUGLYAK, E.B., BORISOVA, V.N., FEDOROVA, G.B.: A study of homogeneity of olivomycin. Antibiotiki 9, 141–146 (1964a).Google Scholar
  6. BRAZHNIKOVA, M.G., KRUGLYAK, E.B., MESENTSEV, A.S., FEDOROVA, G.B: products of acid hydrolysis of olivomycin. Antibiotiki 9, 552–553 (1964b).Google Scholar
  7. BRAZHNIKOVA, M.G., KRUGLYAK, E.B., KOVSHAROVA, I.N., KONSTANTINOVA, N.V., PROSHLYAKQVA, V.V.: Isolation, purification and study of certain physical-chemical properties of anew antibiotic olivomycin. Antibiotiki 7, 39–44 (1962).PubMedGoogle Scholar
  8. FEY, G.: Circulardichrographische Untersuchungen an DNA-Antibiotika-Komplexen. Diss. Nat.Fak. Erlangen-Nürnberg 1973.Google Scholar
  9. FEY, G., KERSTEN, H.: Circulardichrographie an Komplexen von Desoxyribonukleinsäuren mit Antibiotika. Hoppe-Seylers Z. physiol. Chem. 351, 111 (1970).Google Scholar
  10. GAUSE, G.F.: Chromomycin, olivomycin and mithramycin. In: D. GOTTLIEB, P.D. SHAW (Eds.): Antibiotics, Vol. 1: Mechanism of action, pp. 246 to 258. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  11. GAUSE, G.F., UCHOLINO, R.S., SVESHNIKOVA, M.A.: Olivomycin — a new antibiotic produced by Actinomyces olivoreticuli. Antibiotiki 7, 34–38 (1962).Google Scholar
  12. GAUSE, G.G., LOSHKAREVA, N.P.: Effect of olivomycin on the cells of Ehrlich ascites carcinoma. Vop. med. Khim. U, 64–66 (1965).Google Scholar
  13. GAUSE, G.G., LOSHKAREVA, N.P., DUDNIK, Y.V.: Mechanism of action of olivomycin. Antibiotiki 10, 307–313 (1965).Google Scholar
  14. HARTMANN, G., BEHR, W., BOCK, L., HONIKEL, K., LILL, H., LILL, U., SIPPEL, A.: Zur Wirkung von Antibiotika auf die Nukleinsäuresynthese. Zbl. Bakt., I. Abt. Orig. 212, 224–232 (1970).Google Scholar
  15. HARTMANN, A., GOLLER, H., KOSCHEL, K., KERSTEN, W., KERSTEN, H.: Hemmung der DNA-abhängigen RNA- und DNA-Synthese durch Antibiotika. Biochem. Z. 341, 126–128 (1964).PubMedGoogle Scholar
  16. HAYASAKA, T., INOUE, Y.: Chromomycin A3 studies in aqjieous solutions. Spectrophotometric evidence for aggregation and interaction with herring sperm deoxyribonucleic acid. Biochemistry 8, 2342–2347 (1969).PubMedGoogle Scholar
  17. HONIKEL, K.O., SANTO, R.E.: A model for the ih vitro inhibition of the DNA polymerase reaction with the base specific antibiotics Chromomycin A3, Actinomycin-C3 and Daunomycin. Biochim. biophys. Acta (Amst.) 269, 354–363 (1972).Google Scholar
  18. KAMIYAMA, M., KAZIRO, Y.: Mechanism of action of chromomycin A3. I. Inhibition of nucleic acid metabolism in B. subtilis cells. J. Biochem. (Tokyo) 59, 49–56 (1966).Google Scholar
  19. KAZIRO, Y., KAMIYAMA, M.: Inhibition of RNA polymerase reaction by chromomycin A3. Biochem. biophys. Res. Commun. 19, 433–437 (1965).Google Scholar
  20. KERSTEN, W.: Interaction of carcinostatic antibiotics with nucleic acids. Gann Monograph 6, 65–71 (1968).Google Scholar
  21. KERSTEN, W.: Inhibition of RNA synthesis by quinone antibiotics. In: Progr. molec. subcell. Biol., Vol. 2 (F.E. HAHN, Ed.), pp. 48 to 57. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  22. KERSTEN, W., KERSTEN, H.: Die Bindung von Daunomycin, Cinerubin und Chromomycin A3 an Nukleinsäuren. Biochem. Z. 341, 174–183 (1965).PubMedGoogle Scholar
  23. KERSTEN, W., KERSTEN, H.: Interaction of antibiotics with nucleic acids. In: B. PULLMAN (Ed.): Mol. Assoc. Biology, pp. 289–298. New York-London: Academic Press 1968.Google Scholar
  24. KERSTEN, W., KERSTEN, H., STEINER, F.E., EMMERICH, B.: The effect of chromomycin and mithramycin on the synthesis of deoxyribonucleic acid and ribonucleic acids. Hoppe-Seylers Z. physiol. Chem. 348, 1415–1423 (1967).PubMedGoogle Scholar
  25. KERSTEN, W., KERSTEN, H., SZYBALSKI, W.: Physicochemical properties of complexes between deoxyribonucleic acid and antibiotics which affect ribonucleic acid synthesis (actinomycin, daunomycin, cinerubine, nogalamycin, chromomycin, mithramycin and olivomycin). Biochemistry 5, 236–244 (1966).PubMedGoogle Scholar
  26. KIDA, M., UJIHARA, M., OHMURA, E., KAZIWARA, K.: The effect of chromomycin A3 upon nucleic acid metabolism of B. subtilis SB-15. J. Biochem. 59, 353–362 (1966).PubMedGoogle Scholar
  27. KOSCHEL, K., HARTMANN, G., KERSTEN, W., KERSTEN, H.: Die Wirkung des Chromomycins und einiger Anthracyclinantibiotika auf die DNA-abhängige Nukleinsäure-Synthese. Biochem. Z. 344, 76–86 (1966).Google Scholar
  28. LAIKO, A.V.: The action of certain antitumour antibiotics on the synthesis of nucleic acids in cells of Staphylococci. Antibiotiki 7, 601–605 (1962).PubMedGoogle Scholar
  29. MIYAMATO, M., MORITA, K., KAWAMATSU, Y., NOGUCHI, S., MARUMOTO, R., TANAKA, K., TATSUOKA, S., NAKANISHI, K., NAKADAIRA, Y., BHACCA, N.: Chromomycinone, the aglycone of chromomycin A3. Tetrahedron Letters 2355–2365 (1964a).Google Scholar
  30. MIYAMOTO, M., MORITA, K., KAWAMATSU, Y., SASAI, M., NOHARA, A., TANAKA, K., TATSUOKA, S., NAKANISHI, K., NAKADAIRA, Y., BHACCA, N«: The structure of chromomycin A3. Tetrahedron Letters 2367–2370 (1964b).Google Scholar
  31. MIYAMOTO, M., KAWAMATSU, Y., SHINIHARA, M., NAKANISHI, K., NAKADAIRA, A., BHACCA, N.: The four chromoses from chromomycin A3. Tetrahedron Letters 2371–2377 (1964c).Google Scholar
  32. MIYAMOTO, M., KAWAMATSU, Y., KAWASHIMA, K., SHINOHARA, M., NAKANISHI, K.: The full structures of three chromomycin A2, A3 and A4. Tetrahedron Letters 545–552 (1966).Google Scholar
  33. MÜLLER, W., CROTHERS, D.M.: Studies of the binding of actinomycin and related compounds to DNA. J. molec. Biol. 35, 251–290 (1968).PubMedGoogle Scholar
  34. NAYAK, R., SIRSI, M., PODDER, S.K.: Role of magnesium ion on the interaction between chromomycin A3 and deoxyribonucleic acid. FEBS Letters 30, 157–162 (1973).PubMedGoogle Scholar
  35. NORTHROP, G., TAYLOR, S.G., NORTHROP, R.L.: Biochemical effects of mithramycin on cultured cells. Cancer Res. 29, 1916–1919 (1969).PubMedGoogle Scholar
  36. OSTERTAG, W., KERSTEN, W.: The action of proflavine and actinomycin D in causing chromatid breakage in human cells. Exp. Cell Res. 39, 296–301 (1965).PubMedGoogle Scholar
  37. RAO, K.V., CULLEN, W.P., SOBIN, B.A.: A new antibiotic with antitumor properties. Antibiot. and Chemother. 12, 182–186 (1962).Google Scholar
  38. RATAPONGS, C.: In vitro-Untersuchungen zur Wirkung von Chromomycin A3 auf den Nukleinsäurestoffwechsel von Ehrlich-Ascitestumorzellen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 262, 183–188 (1969).Google Scholar
  39. SCHOLTISSEK, C., BECHT, H., MACPHERSON, I.: The effect of mithramycin on the multiplication of myxoviruses. J. gen. Virol. 8, 11–19 (1970).PubMedGoogle Scholar
  40. SMITH, R., HENSON, D.: Inhibition of DNA virus replication with mithramycin. Fed. Proc. 24, 159 (1965).Google Scholar
  41. TABACZYNSKI, M., SHELDRICK, P., SZYBALSKI, W.: Comparison of the mutagenic properties of the acridine dyes and of other “intercalating” agents, including ethidium bromide and the anthracycline antibiotics (cinerubin, daunomycin, and nogalamycin). Microbiol Genet. Bull. 23, 7–8 (1965).Google Scholar
  42. TATSUOKA, S., NAKAZAWA, K., MIYAKE, A., KAZIWARA, K., ARAMAKI, Y., SHIBATA, M., TANABE, K., HAMADA, Y., HITOMI, H., MIYAMOTO, M., MIZUNO, K., WATANABE, J., ISHIDATE, M., YOKOTANI, H., USHIKAWA, I.: Isolation, anticancer activity and pharmacology of a new antibiotic chromomycin A3. Gann 49 (suppl.), 23–24 (1958).Google Scholar
  43. TATSUOKA, S., TANAKA, K., MIYAMOTO, M., MORITA, K., KAWAMATSU, Y., NAKANISHI, K., NAKADAIRA, Y., BHACCA, N.: The structure of chromomycin A3, a cancerostatic antibiotic. Proc. Jap. Acad. 40, 236–240 (1964).Google Scholar
  44. WAKISAKA, G., UCHINO, H., NAKAMURA, T., SOTOBAYASHI, H., SHIRAKAWA, S., ADACHI, A., SAKURAI, M.: Selective inhibition of biosynthesis of ribonucleic acid in mammalian cells by chromomycin A3. Nature 198, 385–386 (1963).PubMedGoogle Scholar
  45. WARD, D., REICH, E., GOLDBERG, I.H.: Base specificity in the interaction of polynucleotides with antibiotic drugs. Science 149, 1259 to 1263 (1965).PubMedGoogle Scholar
  46. WARING, M.: Variation of the supercoils in closed cirucular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J. molec. Biol. 54, 247–279 (1970).PubMedGoogle Scholar
  47. YARBRO, J.W., KENNEDY, B.J., BARNUM, C.P.: Mithramycin inhibition of ribonucleic acid synthesis. Cancer Res. 26, 36–39 (1966).PubMedGoogle Scholar
  48. ZALMANZON, E.S., ZELENIN, A.V., KAFIANI, K.A., LOBAREVA, L.S., LYAPUNOVA, E.A., TIMOFEEVA, M.Y.: Effect of some antitumour antibiotics on nucleic acid synthesis and virus reproduction in human amnion cell cultures (strain FL). Antibiotiki 10, 613–622 (1965).PubMedGoogle Scholar
  49. ZALMANZON, E.S., ZELENIN, A.V., KAFIANI, K.A., LOBAREVA, L.S., LYAPUNOVA, E.A., TIMOFEEVA, M.Y.: On the mechanism of action of olivomycin. Vop. med. Khim 12, 52–62 (1966).Google Scholar

D. Kanchanomycin

  1. BEERS, R.F., ARMILEI, G.: Heterogeneous binding of acridine orange by polynucleotides. Nature 208, 466–468 (1965).PubMedGoogle Scholar
  2. FRIEDMAN, P.A., JOEL, P.B., GOLDBERG, I.H.: Interaction of kanchanomycin with nucleic acids. I. Physical properties of the complex. Biochemistry 8, 1535–1544 (1969a).PubMedGoogle Scholar
  3. FRIEDMAN, P.A., LI, T.-K., GOLDBERG, I.H.: Interaction of kanchanomycin with nucleic acids. II. Optical rotatory dispersion and circular dichroism. Biochemistry 8, 1545–1553 (1969b).PubMedGoogle Scholar
  4. JOEL, P.B., FRIEDMAN, P.A., GOLDBERG, I.H.: Interaction of kanchanomycin with nucleic acids. III. Contrasts in the mechanisms of inhibition of ribonucleic acid and deoxyribonucleic acid polymerase ractions. Biochemistry 9, 4421–4427 (1970).PubMedGoogle Scholar
  5. LIU, W.-C., CULLEN, W.P., RAO, K.V.: BA-1802657 A new cytotoxic antibiotic. Antimicrob. Agents Chemotherapy, 1962, 761–771 (1962).Google Scholar

E. Distamycin and Netropsin

  1. ARCAMONE, F., PENCO, S., OREZZI, P., NICOLELLA, V., PIRELLI, A.: Structure and synthesis of distamycin A. Nature 203, 1064–1065 (1964).PubMedGoogle Scholar
  2. ARCAMONE, F., PENCO, S., Delle MONACHE, F.: Distamyein A. III. Synthesis of analogues with modifications in the side chains. Gazz. Chim. Ital. 99, 620–631 (1969).Google Scholar
  3. ARCAMONE, F., NICOLELLA, V., PENCO, S., REDAELLI, S.: Distamyein A. IV. Synthesis of analogues with different number of residues of 1-methyl-4-aminopyrrole-2-carboxylic acid. Gazz. Chim. Ital. 99, 632–640 (1969).Google Scholar
  4. CASAZZA, A.M., GHIONE, M.: Therapeutic action of distamyein A on vaccinia virus infections in vivo. Chemotherapia (Basel) 9, 80–87 (1964/65).Google Scholar
  5. CHANDRA, P., ZIMMER, C., THRUM, H.: Effect of distamyein A on the structure and template activity of DNA in RNA-polymerase system. FEBS Letters 7, 90–94 (1970).PubMedGoogle Scholar
  6. CHANDRA, P., GÖTZ, A., WACKER, A., VERINI, M.A., CASAZZA, A.M., FIORETTI, A., ARCAMONE, F., GHIONE, M.: Some structural requirements for the antibiotic action of distamycins. FEBS Letters 15, 249 to 252 (1971).Google Scholar
  7. CHANDRA, P., GÖTZ, A., WACKER, A., ZUNINO, F., Di MARCO, A., VERINI, M.A., CASAZZA, A.M., FIORETTI, A., ARCAMONE, F., GHIONE, M.: Some structural requirements for the antibiotic action of distamycins, III. Possible interaction of formyl group of distamyein side chain with adenine. Hoppe Seylers Z. physiol. Chem. 353, 393–398 (1972a).PubMedGoogle Scholar
  8. CHANDRA, P., ZUNINO, F., GÖTZ, A., WACKER, A., GERICKE, D., Di MARCO, A., CASAZZA, A.M., GIULIANI, F.: Template specific inhibition of DNA polymerases from RNA tumour viruses by distamyein A and its structural analogues. FEBS Letters 21, 154–158 (1972b).PubMedGoogle Scholar
  9. DMARCO, A., GAETANI, M., OREZZI, P., SCOTTI, T., ARCAMONE, F.: Experimental studies on distamyein A — a new antibiotic with cytotoxic activity. Cancer Chemother. Rep. 18, 15–19 (1962).Google Scholar
  10. Di MARCO, A., GHIONE, M., MIGLIACCI, A., MORVILLO, E., SANFILIPPO, A.: Studi sul meccanismo dell’azione antifagica dell’antibiotico distamicina. Giorn. Microbiol. 11, 87–87 (1963a).Google Scholar
  11. Di MARCO, A., GHIONE, M., SANFILIPPO, A., MORVILLO, E.: Selective inhibition of the multiplication of phage T1 in E. coli K12. Experientia (Basel) 19, 134–136 (1963b).Google Scholar
  12. ESTENSEN, R.D., KREY, A.K., HAHN, F.E.: Studies on a deoxyribonucleic acid-quinine complex. Molec. Pharmacol. 5, 532–541 (1969).Google Scholar
  13. FOURNEL, J., GANTER, P., KOENIG, F., RATULD, J., WERNER, G.H.: Antiviral activity of distamyein A. Antimicr. Agents Chemother. 1965, 599–604 (1965).Google Scholar
  14. HAHN, F.E., O’BRIEN, R.L., CIAK, J., ALLISON, J.L., OLENICK, J.G.: Studies on modes of action of chloroquine, quinacrine and on chloroquine resistance. Milit. Med. 131, 1071–1089 (1966).Google Scholar
  15. KOTLER, M., BECKER, Y.: Rifampicin and distamyein A as inhibitiors of Rous sarcoma virus reverse transcriptase. Nature New Biology 234, 212–214 (1971).PubMedGoogle Scholar
  16. KREY, A.K., HAHN, F.E.: Studies on the complex of distamyein A with calf thymus DNA. FEBS Letters 10, 175–178 (1970).PubMedGoogle Scholar
  17. PUSCHENDORF, B., GRUNICKE, H.: Effect of distamyein A on the template activity of DNA in a DNA polymerase system. FEBS Letters 4, 355 to 357 (1969).PubMedGoogle Scholar
  18. PUSCHENDORF, B., PETERSEN, E., WOLF, H., WERCHAU, H., GRUNICKE, H.: Studies on the effect of distamyein A on the DNA dependent RNA polymerase system. Biochem. biophys. Res. Commun. 43, 617–624 (1971).PubMedGoogle Scholar
  19. REINERT, K.E.: Adenosine thymidine cluster-specific elongation and stiffening of DNA induced by the oligopeptide antibiotic netropsin. J. molec. Biol. 72, 593–607 (1972).PubMedGoogle Scholar
  20. VERINI, M.A., GIONE, M.: Activity of distamyein A on vaccinia virus infection of cell cultures. Chemotherapia (Basel) 9, 145–160 (1964).Google Scholar
  21. WERNER, G.H., GANTER, P., De RATULD, Y.: Studies on the antiviral activity of distamyein A. Chemotherapia 9, 65–79 (1964).Google Scholar
  22. ZILLIG, W., FUCHS, E., MILLETTE, R.: DNA-dependent RNA-polymerase. In: Procedures in nucleic acid research (G.L. CANTONI, D.R. DAVIES, Eds.), pp. 323–339. London: Harper and Row 1966.Google Scholar
  23. ZIMMER, C., LUCK, G.: Optical rotatory dispersion properties of nucleic acid complexes with the oligopeptide antibiotics distamycin A and netropsin. FEBS Letters 10, 339–342 (1970).PubMedGoogle Scholar
  24. ZIMMER, C., LUCK, G.: Stability and dissociation of the DNA complexes with distamycin A and netropsin in the presence of organic solvents, urea and high salt concentration. Biochim. biophys. Acta (Amst.) 287, 376–385 (1972).Google Scholar
  25. ZIMMER, C., PUSCHENDORF, B., GRUNICKE, H., CHANDRA, P., VENNER, H.: Influence of netropsin and distamycin A on the secondary structure and template activity of DNA. Europ. J. Biochem. 21, 269–278 (1971a).PubMedGoogle Scholar
  26. ZIMMER, C., REINERT, E.-E., LUCK, G., WIHNERT, U., LSBER, G., THRUM, H.: Interaction of the oligopeptide antibiotics netropsin and distamycin A with nucleic acids. J. molec. Biol. 58, 329–348 (1971b).PubMedGoogle Scholar
  27. ZIMMER, C., LUCK, G., THRUM, H., PITRA, C.: Binding of analogues of the antibiotics distamycin A and netropsin to native DNA. Europ. J. Biochem. 26, 81–89 (1972).PubMedGoogle Scholar
  28. ZUNINO, F., Di MARCO, A.: Studies on the interaction of distamycin A and its derivatives with DNA. Biochem. Pharmacol. 21, 867–874 (1972).PubMedGoogle Scholar

F. Anthramycin

  1. BATES, H.M., KUENZIG, W., WATSON, W.B.: Studies on the mechanism of action of anthramycin-methyl-ether, a new antitumour antibiotic. Cancer Res. 29, 2195–2205 (1969)PubMedGoogle Scholar
  2. GRUNBERG, E., PRINCE, H.N., TITSWORTH, E., BESKID, G., TENDLER, M.D.: Chemotherapeutic properties of anthramycin. Chemotherapia (Basel) 11, 249–260 (1966).Google Scholar
  3. HORWITZ, S.: Anthramycin. In. E. HAHN (Ed.): Progr. molec. subcell. Biology, Vol. 2, pp. 40–47. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  4. HORWITZ, S.B., CHANG, S.C., GROLLMAN, A.P., BORKOVEC, A.B.: Chemosterilant action of anthramycin: a proposed mechanism. Science 174, 159–161 (1971).PubMedGoogle Scholar
  5. HORWITZ, S.B., GROLLMAN, A.P.: Interactions of small molecules with nucleic acids. I. Mode of action of anthramycin. Antimicrobial Agents and Chemotherapy, 1968, 21–24 (1968).Google Scholar
  6. KOHN, K.W., BONO, V.H. Jr., KANN, H.E. Jr.: Anthramycin, a new type of DNA-inhibiting antibiotic: reaction with DNA and effect on nucleic acid synthesis in mouse leukemia cells. Biochim. biophys. Acta (Amst.) 155, 121–129 (1968).Google Scholar
  7. KOHN, K.W., SPEARS, C.L.: The reaction of anthramycin with DNA. J. molec. Biol. 14, 551–572 (1970).Google Scholar
  8. LEIMGRUBER, W., BATCHO, A.D., SCHENKER, F.: The structure of anthramycin. J. Amer. chem. Soc. 87, 5793–5795 (1965a).Google Scholar
  9. LEIMGRUBER, W., BATCHO, A. D., CZAJKOWSKI, R.C.: Total synthesis of anthramycin. J. Amer. chem. Soc. 90, 5641–5643 (1968).Google Scholar
  10. LEIMGRUBER, W., STEFANOVIC, V., SCHENKER, F., KARR, A., BERGER, J.: Isolation and characterization of anthramycin, a new antitumour antibiotic. J. Amer. chem. Soc. 87, 5791–5793 (1965b).Google Scholar
  11. STEFANOVIC, V.: Spectrophotometrie studies of the interaction of anthramycin with deoxyribonucleic acid. Biochem. Pharmacol. 17, 315–323 (1968).Google Scholar
  12. TENDLER, M.D., KORMAN, S.: “Refuin” a non-cytotoxic carcinostatic compound proliferated by a thermophilic actinomycete. Nature 199, 501–501 (1963).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Helga Kersten
    • 1
  • Walter Kersten
    • 1
  1. 1.Physiologisch-Chemisches InstitutUniversität Erlangen-NürnbergErlangenFed. Rep. Germany

Personalised recommendations