Covalent Alterations of Protein Structure in the Inhibition of Protein Synthesis by Diphtheria Toxin

  • R. John Collier
  • Rae Drazin
  • Judith Kandel
  • Robert J. DeLange
  • Dominic W. Chung
Conference paper


The toxicity of diphtheria toxin is believed to result from its activity in inhibiting protein synthesis in sensitive cells. This activity is now known to involve two distinct examples of covalent modification of protein structure.
  1. a)

    The toxin (m.wt. 63,000) inhibits protein synthesis by catalyzing a covalent modification of elongation factor 2 (EF2). The modification involves attachment of the adenosine diphosphate ribose (ADPR) portion of NAD+ to the factor, with concomitant release of nicotinamide and a proton. The modified factor can no longer function in the translocation process on ribosomes, perhaps because of its altered capacity to interact with RNA.

  2. b)

    The intact toxin molecules, a single 63,000 dalton chain, is inactive in catalyzing the ADP-ribosylation of EF 2, and must be subjected to limited proteolysis and reduction for this activity to be expressed. Trypsin, which is the most effective protease tested, attacks the toxin at any of at least three closely spaced arginines, splitting it into two large fragments, A (m.wt. 24,000) and B (m.wt. 39,000) linked by a disulfide bridge. Free fragment A, released after reduction of this disulfide, is responsible for the enzymic activity of the toxin.


The evidence for these covalent modifications is summarized together with recent work on the structure and activity of fragment A.


Disulfide Bridge Covalent Modification Inhibit Protein Synthesis Diphtheria Toxin Concomitant Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


EF 2

elongation factor 2 (formerly termed amino-acyl transferase 2, or T2)


adenosine diphosphate ribose


sodium dodecyl sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bermek, E., (1972), FEBS Letters, 23, 95.CrossRefGoogle Scholar
  2. Collier, R. J., (1967), J. Mol. Biol., 25, 83.CrossRefGoogle Scholar
  3. Collier, R. J., and Cole, H. A., (1969), Science, 164, 1179.CrossRefGoogle Scholar
  4. Collier, R. J., and Kandel, J., (1971), J. BioZ. Chem., 246, 1497.Google Scholar
  5. Colowick, S. P., and Womack, F. C., (1969), J. Biol. Chem., 244, 774.Google Scholar
  6. Drazin, R., Kandel, J., and Collier, R. J., (1971), J. Biol. Chem., 246, 1504.Google Scholar
  7. Gill, D. M., and Dinius, L. L., (1971), J. BioZ. Chem., 246, 1485.Google Scholar
  8. Gill, D. M., and Pappenheimer, A. M., Jr. (1971), J. Biol. Chem., 246, 1492.Google Scholar
  9. Gill, D. M., Pappenheimer, A. M., Jr., Brown, R., and Kurnick, J. T., (1969), J. Exp. Med., 129, 1.CrossRefGoogle Scholar
  10. Gill, D. M., Pappenheimer, A. M., Jr., and Uchida, T., (1973), Fed. Proc., 32, 1508.Google Scholar
  11. Goor, R. J., and Maxwell, E. S., (1970), J. Biol. Chem., 245, 616.Google Scholar
  12. Goor, R. J., and Pappenheimer, A. M., Jr., (1967a), J. Exp. Med., 126, 899.CrossRefGoogle Scholar
  13. Goor, R. J., and Pappenheimer, A. M., Jr.,(1967b), J. Exp. Med., 126, 913.Google Scholar
  14. Hayes, M, B, and Kaplan, N. O., (1972), Fed. Proc.,31, 452Abs.Google Scholar
  15. Henriksen, O., and Maxwell, E. S., (1973), Fed. Proc., 32, 494Abs.Google Scholar
  16. Honjo, T., and Hayaishi, O., (1973), in: Current Topics of Cellular Regulation, vol. 7, in press.Google Scholar
  17. Honjo, T., Nishizuka, Y., Hayaishi, O., and Kato, I., (1968), J. Biol. Chem., 243, 3553.Google Scholar
  18. Honjo, T., Nishizuka, Y., Kato, I., and Hayaishi, O., (1971), J. Biol. Chem., 246, 4251.Google Scholar
  19. Massey, V., and Palmer, G., (1962), J. Biol. Chem., 237, 2347.Google Scholar
  20. Michel, A., Zonen, J., Monier, C., Crispuls, C., and Dirk, J., (1972), Biochim. Biophys. Acta., 257, 249.Google Scholar
  21. Montanaro, L., and Sperti, S., (1967), Biochem. J., 105, 635.Google Scholar
  22. Montanaro, L., Sperti, S., and Mattioli, A., (1970), Biochim. Biophys. Acta., 238, 493.Google Scholar
  23. Traugh, J. A., and Collier, R. J., (1970), Biochem. Biophys. Res. Comm., 40, 1437.CrossRefGoogle Scholar
  24. Traugh, J. A., and Collier, R. J., (1971), Biochemistry, 10, 2357.Google Scholar
  25. Uchida, T., Pappenheimer, A. M., Jr., and Harper, A. A., (1972), Science, 175, 901.CrossRefGoogle Scholar
  26. Velick, S. F., (1958), J. Biol. Chem., 233, 1455.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • R. John Collier
    • 1
  • Rae Drazin
    • 1
  • Judith Kandel
    • 1
  • Robert J. DeLange
    • 1
  • Dominic W. Chung
    • 1
  1. 1.Departments of Bacteriology and Biological Chemistry, and the Molecular Biology InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations