Micro-Determination of Phospholipids

  • Volker Neuhoff
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 14)


As phospholipids are determined fluorometrically, rigorous standards of purity and cleanliness for the solvents, reagents, and cuvettes employed must always be observed. Any fluorometer can be used, so long as it is possible to record the spectra either directly or by a coupled pen-recorder. No fluorometric measurement, even if it is only a routine measurement with a well-established procedure, should be carried out without recording the spectrum. It is not enough simply to measure and record a single pen deflection at a known fluorescence maximum; under such conditions an alteration in a spectrum, due perhaps to an impurity which could falsify the measurement, can be overlooked very easily.


Excitation Spectrum Iodine Vapour Total Lipid Extract Anterior Column Solvent Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Althaus, H.-H., Neuhoff, V.: One-dimensional micro chromatography of phospholipids and neutral lipids on sodium silicate impregnated silica gel layers. Hoppe-Seylers Z. physiol. Chem. in press.Google Scholar
  2. Bartlett, G.R.: Phosphorus assay in column chromatography. J. biol. Chem. 234, 466–468 (1959).PubMedGoogle Scholar
  3. Becker, R.S.: Theory and interpretation of fluorescence and phosphorescence. New York-London- Sydney-Toronto: Wiley Interscience 1969.Google Scholar
  4. Brante, G.: Studies on lipids in the nervous system with special reference to quantitative chemical determination and topical distribution. Acta physiol. scand. 18, Suppl. 63 (1949).Google Scholar
  5. Chalvardjian, A., Rudnicki, E.: Determination of lipid phosphorus in the nanomolar range. Analyt. Biochem. 36, 225–226 (1970).PubMedCrossRefGoogle Scholar
  6. Eibl, H., Lands, W.E.M.: A new, sensitive determination of phosphate. Analyt. Biochem. 30, 51–57 (1970).CrossRefGoogle Scholar
  7. Friedel, R.O., Schanberg, S.M.: Incorporation in vivo of intracisternally injected 32P into phospholipids of rat brain. J. Neurochem. 18, 2191–2200 (1971).PubMedCrossRefGoogle Scholar
  8. Guilbault, G.G.: Fluorescence, theory, instrumentation, and practice. New York: Marcel Dekker, Inc. 1967.Google Scholar
  9. Hanes, C.S., Isherwood, F.A.: Separation of the phosphoric esters on the filter paper chromatogram. Nature (Lond.) 164, 1107–1112 (1949).CrossRefGoogle Scholar
  10. Harris, A.F., Saifer, A., Weintraub, S.K.: Fluorescence quenching of acridines by strandin. Arch. Biochem. Biophys. 95, 106–113 (1961).PubMedCrossRefGoogle Scholar
  11. Hawthorne, N., Kai, M.: Metabolism of phosphoinositides. In: Handbook of neurochemistry, ed. by A. Lajtha, vol. III, p. 491–505. New York: Plenum Press 1970.Google Scholar
  12. Herken, H., Neuhoff, V.: Mikroanalytischer Nachweis von Acetylpyridin-adenin-dinucleotid und Acetylpyridin-adenin-dinucleotid-phosphat im Gehirn. Hoppe-Seylers Z. physiol. Chem. 331, 85–94 (1963).PubMedCrossRefGoogle Scholar
  13. Herken, H., Neuhoff, V.: Spektrofluorometrische Bestimmung des Einbaus von 6-Aminonicotin- säureamid in die oxydierten Pyridinnucleotide der Niere. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 187–201 (1964).CrossRefGoogle Scholar
  14. Hokin, L.E.: Effect of norepinephrine on 32P incorporation into individual phosphatides in slices from different areas of the guinea pig brain. J. Neurochem. 16, 127–134 (1969).PubMedCrossRefGoogle Scholar
  15. Horrocks, L.A.: The alk-l-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin-layer chromatography. J. Lipid Res. 9, 469–472 (1968).PubMedGoogle Scholar
  16. Horrocks, L.A., Sun, G.Y.: Ethanolamine plasmalogens. In: Research methods in neurochemistry, ed. by N. Marks and R. Rodnight, vol. 1, p. 223–231. New York-London: Plenum Press 1972.Google Scholar
  17. Hubmann, F.-H., Neuhoff, V.: In preparation (1973).Google Scholar
  18. Jones, D., Bowyer, D.E., Gresham, G. A., Howard, A.N.: An improved spray reagent for detecting lipids on thin-layer chromatograms. J. Chromatogr. 23, 172–174 (1966).PubMedCrossRefGoogle Scholar
  19. Kleinig, H., Lempert, U.: Phospholipid analysis on a micro scale. J. Chromatogr. 53, 595–597 (1970).CrossRefGoogle Scholar
  20. Lowry, O. H., Passonneau, J.V.: A flexible system of enzymatic analysis. New York-London: Academic Press 1972.Google Scholar
  21. Lowry, O.H., Passonneau, J.V., Schulz, D.W., Rock, M.K.: The measurement of pyridine nucleotides by enzymatic cycling. J. biol. Chem. 236, 2746–2755 (1961).PubMedGoogle Scholar
  22. Lowry, O.H., Roberts, N.R., Kapphan, J.I.: The fluorometric measurement of pyridine nucleotides. J. biol. Chem. 224, 1047–1064 (1957).PubMedGoogle Scholar
  23. Meng, K.: Untersuchungen zur Störung der Herztätigkeit bei Helix pomatia. Zool. Fahr. 68, 539–566 (1960).Google Scholar
  24. Neuhoff, V., Herken, H.: Mikromethode zum Nachweis von 3-APAD (3-Acetylpyridin-Adenin- nukleotid) in tierischen Geweben. Naturwissenschaften 49, 519 (1962).CrossRefGoogle Scholar
  25. Osborne, N.N., Althaus, H.H., Neuhoff, V.: Phospholipids in the nervous system of the gastropod mollusc Helix pomatia, and the in vivo incorporation of 32P into the phospholipids of identified neurons. Comp. Biochem. Physiol. 43B, 671–679 (1972).Google Scholar
  26. Popov, A.D., Stefanov, K.L.: Über einen neuen kontrastfähigen Fluoreszenzindikator für die Dünnschichtchromatographie der Lipide. J. Chromatogr. 37, 533–535 (1968).CrossRefGoogle Scholar
  27. Reifenrath, R.: In preparation (1973).Google Scholar
  28. Schiefer, H.-G., Neuhoff, V.: Fluorometric microdetermination of phospholipids on the cellular level. Hoppe-Seylers Z. physiol. Chem. 352, 913–926 (1971).PubMedCrossRefGoogle Scholar
  29. Skidmore, W.D., Entenman, C.: Two-dimensional thin-layer chromatography of rat liver phospholipids. J. Lipid Res. 3, 471–475 (1962).Google Scholar
  30. Stahl, E.: Dünnschichtchromatographie. Ein Laboratoriumshandbuch, 2. Aufl. Berlin-Heidelberg- New York: Springer 1967.Google Scholar
  31. Stoffel, W., Scheid, A.: Zur Polyfettsäure- und Phospholipidsynthese in der Gewebekultur von HeLa Zellen. Hoppe-Seylers Z. physiol. Chem. 348, 205–226 (1967).PubMedCrossRefGoogle Scholar
  32. Svetashev, V.I., Vaskovsky, V.E.: A simplified technique for thin-layer microchromatography of lipids. J. Chromatogr. 67, 376–378 (1972).PubMedCrossRefGoogle Scholar
  33. Turner, G.K.: An absolute spectrofluorometer. Science 146, 183–189 (1964).PubMedCrossRefGoogle Scholar
  34. Udenfriend, S.: Fluorescence assay in biology and medicine. New York-London: Academic Press 1962 and 1969.Google Scholar
  35. White, C.E., Argauer, R.J.: Fluorescence analysis, a practical approach. New York: Marcel Dekker, Inc. 1970.Google Scholar
  36. Willing, F., Neuhoff, V., Herken, H.: Der Austausch von 3-Acetylpyridin gegen Nicotinsäureamid in den Pyridinnucleotiden verschiedener Himregionen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 254–266 (1964).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • Volker Neuhoff
    • 1
  1. 1.Medizin (Arbeitsgruppe Neurochemie)Max-Planck-Institut für ExperimentelleGöttingenGermany

Personalised recommendations