Quantitative Autoradiography at the Cellular Level

  • Volker Neuhoff
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 14)

Abstract

In 1957 Hilde Levi wrote that in almost no analytical method was the term “quantitative” so misused as in autoradiography. If we take the term “quantitative” to mean that absolute amounts of a substance are measured, this would seem to be true. The misuse of the term in this sense, indeed, continued after 1957, and gained ground following the introduction of tritiated thymidine for biological research.

Keywords

Formalin Glycerol Dust Amethopterine Methionine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Ada, G.L., Humphrey, J.H., Askonas, B. A., McDevitt, H.O., Nossal, G. J.V.: Correlation of grain counts with radioactivity (125I and tritium) in autoradiography. Exp. Cell Res. 41, 557–572 (1966).PubMedCrossRefGoogle Scholar
  2. Adamson, L.F., Langeluttig, S.G., Anast, C.S.: Amino acid transport in embryonic chick bone and rat costal cartilage. Biochim. biophys. Acta (Amst.) 115, 345–354 (1966).CrossRefGoogle Scholar
  3. Amano, M., Leblond, C.P., Nadler, N.J.: Radioautographic analysis of nuclear RNA in mouse cells revealing three pools with different turnover times. Exp. Cell Res. 38, 314–340 (1965).PubMedCrossRefGoogle Scholar
  4. Andresen, N., Chapman-Andresen, C., Holter, H., Robinson, C.V.: Quantitative autoradiographic studies on the amoeba chaos chaos with 14C. C. R. Lab. Carlsberg, Sér. chim. 28, 499–528 (1953).Google Scholar
  5. Antoni, F., Köteles, G.J., Hempel, K., Maurer, W.: Über die Eignung verschiedener Fixationen und perchlorsäurehaltiger Lösungen für autoradiographische Untersuchungen des RNS-, DNS- und Proteinstoffwechsels. Histochemie 5, 210–220 (1965).PubMedCrossRefGoogle Scholar
  6. Appleton, T.C.: Autoradiography of soluble labelled compounds. J. roy. micr. Soc. 83, 277–281 (1964).PubMedCrossRefGoogle Scholar
  7. Appleton, T.C.: Resolving power, sensitivity and latent image fading of soluble-compound autoradiographs. J. Histochem. Cytochem. 14, 414–420 (1966).PubMedCrossRefGoogle Scholar
  8. Appleton, T.C.: The application of autoradiography to the study of soluble compounds. Acta histochem. (Jena), Suppl. 8, 115–131 (1968).Google Scholar
  9. Arens, H., Eggert, J., Heisenberg, E.: Zusammenhang zwischen Schwärzung, Silbermenge, Deckkraft, Kornzahl und Korndimension entwickelter photographischer Schichten. Z. wiss. Photogr. 28, 356–366 (1931).Google Scholar
  10. Axelrod, D. J., Hamilton, J.G.: Radio-autographic studies of the distribution of lewisite and mustard gas in skin and eye tissues. Amer. J. Path. 23, 389-398 (1947).PubMedGoogle Scholar
  11. Barnard, E. A., Marbrook, J.: Quantitative cytochemistry using directly applied radioactive reagents. Nature (Lond.) 189, 412–413 (1961).CrossRefGoogle Scholar
  12. Baserga, R.: Autoradiographic methods. In: H. Busch (ed.), Methods in cancer research, vol. I, p. 45–116. New York-London: Academic Press 1967.Google Scholar
  13. Baserga, R., Kisielski, W. E.: Effects of histologic and histochemical procedures on the intensity of the label in radioautographs of cells labeled with tritiated compounds. Lab. Invest. 12, 648–655 (1963).PubMedGoogle Scholar
  14. Baserga, R., Malamud, D.: Autoradiography. Techniques and application. New York-Evanston- London: Harper & Row Publishers 1969.Google Scholar
  15. Baserga, R., Nemeroff, K.: Factors which affect efficiency of autoradiography with tritiated thymidine. Stain Technol. 37, 21–26 (1962).PubMedGoogle Scholar
  16. Becker, K.: Filmdosimetrie. Berlin-Göttingen-Heidelberg: Springer 1962.Google Scholar
  17. Blackett, N.M., Kember, N.F., Lamerton, L.F.: The measurement of radiation dosage distribution by autoradiographic means with reference to the effect of bone-seeking isotopes. Lab. Invest. 8, 171–178 (1959).PubMedGoogle Scholar
  18. Bleecken, S.: Untersuchung des autoradiographischen Auflösungsvermögens mit Strahlungsquellen verschiedener Betaenergien. Atompraxis 9, 321–324 (1961).Google Scholar
  19. Boström, H., Odeblad, E., Friberg, U.: A quantitative autoradiographic study of the incorporation of S35 in tracheal cartilage. Arch. Biochem. Biophys. 38, 283–286 (1952).PubMedCrossRefGoogle Scholar
  20. Bothe, W.: Über photographische ß-Strahlenmessung. Z. Physik 8, 243–250 (1922).CrossRefGoogle Scholar
  21. Boyd, G.A.: Autoradiography in biology and medicine. New York: Academic Press 1955.Google Scholar
  22. Brinkmann, W., Dörmer, P.: In vitro-Verfahren zur Bestimmung der DNS-Synthese-Dauer einzelner Zellen. Biochemische Voraussetzungen und Ergebnisse. Histochemie 30, 335–343 (1972).PubMedCrossRefGoogle Scholar
  23. Brinkmann, W., Dörmer, P., Muschalik, P.: Eine neue Methode zur Bestimmung der DNS- Synthesegeschwindigkeit von Knochenmarkzellen in vitro. Blut 19, 529–536 (1969).PubMedCrossRefGoogle Scholar
  24. Brownell, G.L.: Interaction of phosphorus-32 beta rays with matter. Nucleonics 10, 30–35 (1952).Google Scholar
  25. Bryant, B.J.: In vivo reutilization of the DNA thymidine of necrotized liver cells by cells of testis and intestine. Exp. Cell Res. 32, 209–212 (1963a).PubMedCrossRefGoogle Scholar
  26. Bryant, B.J.: Reutilization of lymphocyte DNA by cells of intestinal crypts and regenerating liver. J. Cell Biol. 18, 515–523 (1963b).PubMedCrossRefGoogle Scholar
  27. Citoler, P., Citoler, K., Hempel, K., Schultze, B., Maurer, W.: Autoradiographische Untersuchungen mit zwölf H3- und fünf C14-markierten Aminosäuren zur Größe des nuclearen und cytoplasmatischen Eiweißstoffwechsels bei verschiedenen Zellarten von Maus und Ratte. Z. Zellforsch. 70, 419–448 (1966).PubMedCrossRefGoogle Scholar
  28. Cleaver, J.E.: Thymidine metabolism and cell kinetics. Amsterdam: North-Holland Publ. Comp. 1967.Google Scholar
  29. Cleaver, J. E., Holford, R.M.: Investigations into the incorporation of 3H-thymidine into DNA in L-strain cells and the formation of a pool of phosphorylated derivatives during pulse labelling. Biochim. biophys. Acta (Amst.) 103, 654–671 (1965).Google Scholar
  30. Cooper, R.A., Perry, S., Breitman, T.R.: Pyrimidine metabolism in human leukocytes. I. Contribution of exogenous thymidine to DNA-tymine and its effect on thymine nucleotide synthesis in leukemic leukocytes. Cancer Res. 26 (I), 2267–2275 (1966).PubMedGoogle Scholar
  31. Cormack, D.V.: The beta-ray sensitivity of autoradiographic stripping film. Brit. J. Radiol. 28, 450 (1955).PubMedCrossRefGoogle Scholar
  32. Cronkite, E. P., Greenhouse, S.W., Brecher, G., Bond, V. P.: Implication of chromosome structure and replication on hazard of tritiated thymidine and the interpretation of data on cell proliferation. Nature (Lond.) 189, 153–154 (1961).CrossRefGoogle Scholar
  33. Deuchar, E.M.: Staining sections before autoradiographic exposure: Excessive background graining caused by celestin blue. Stain Technol. 37, 324–328 (1962).PubMedGoogle Scholar
  34. Dörmer, P.: Erfahrungen mit der photometrischen Silberkornzählung in der Autoradiographie. Leitz Mitt. Wiss. Techn. 4, 74–78 (1967a).Google Scholar
  35. Dörmer, P.: Auflichtphotometrische Untersuchungen zur Größe der Koinzidenz in der Autoradiographie mit Tritium. Histochemie 8, 1–8 (1967b).PubMedGoogle Scholar
  36. Dörmer, P.: Photometric methods in quantitative autoradiography. In U. Lüttge (ed.), Microauto- radiography and electron probe analysis, p. 7–48. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  37. Dörmer, P.: Kinetics of proliferation in normal hemopoietic and leukemic cells. In: E. Gerlach, K. Moser, E. Deutsch, W. Wilmanns (eds.), Erythrocytes, thrombocytes, leukocytes, p. 356–362. Stuttgart: G. Thieme 1973a.Google Scholar
  38. Dörmer, P.: Kinetics of erythropoietic cell proliferation in normal and anemic man. A new approach using quantitative autoradiography. Progr. Histochem. Cytochem. 1973 b (in press).Google Scholar
  39. Dörmer, P., Brinkmann, W.: Silberkornzählung mit dem Auflicht-Mikroskopphotometer. Ein Beitrag zur quantitativen Autoradiographie. Acta histochem. (Jena), Suppl. 8, 163–169 (1968).Google Scholar
  40. Dörmer, P., Brinkmann, W.: Auflichtphotometrie von Mikroautoradiogrammen für quantitative Einbaustudien an Einzelzellen. Z. analyt. Chem. 252, 84–89 (1970a).CrossRefGoogle Scholar
  41. Dörmer, P., Brinkmann, W.: Estimation of the DNA synthesis rate of bone marrow cells after administration of labelled thymidine in vitro. Proceedings of the IAEA symposium on “ In vitro procedures with radioisotopes in medicine”. Wien: IAEA press 1970b.Google Scholar
  42. Dörmer, P., Brinkmann, W.: Quantitative 14C-Autoradiographie einzelner Zellen. Histochemie 29, 248–264 (1972).PubMedCrossRefGoogle Scholar
  43. Dörmer, P., Brinkmann, W., Dahr, P., Jr.: Thymidylat-de novo-Synthese, salvage pathway und DNS-Synthese während der Differenzierung von Erythroblasten. Blut 25, 185–189 (1972).PubMedCrossRefGoogle Scholar
  44. Dörmer, P., Brinkmann, W., Stieber, A., Stich, W.: Automatische Silberkornzählung in der Einzelzell-Autoradiographie. Eine neue photometrische Methode für die quantitative Autoradiographie. Klin. Wschr. 44, 477–482 (1966).PubMedCrossRefGoogle Scholar
  45. Dörmer, P., Reichart, B., Huhn, D.: Kerntrockengewicht und Beteiligung von 3H-Thymidin an der DNS-Synthese in Einzelzellen der regenerierenden Rattenleber. Z. Zellforsch. 86, 559–570 (1968).PubMedCrossRefGoogle Scholar
  46. Domingues, F.J., Sarko, A., Baldwin, R. R.: A simplified method for quantitation of autoradiography. Int. J. appl. Radiat. 1, 94–101 (1956).PubMedCrossRefGoogle Scholar
  47. Doniach, I., Pelc, S.R.: Autoradiograph technique. Brit. J. Radiol. 23, 184–192 (1950).CrossRefGoogle Scholar
  48. Dudley, R.A.: Photographic detection and dosimetry of beta rays. Nucleonics 12, 24–31 (1954).Google Scholar
  49. Dudley, R.A., Dobyns, B.M.: The use of autoradiographs in the quantitative determination of radiation dosages from Ca45 in bone. Science 109, 327–342 (1949).PubMedCrossRefGoogle Scholar
  50. Evans, R.D.: Interactions of a and ß particles with matter. In: T.F. Dougherty, W.S.S. Jee, C.W. Mays, and B.J. Stover (eds.), Some aspects of internal irradiation. Oxford-London- New York-Paris: Pergamon Press 1962.Google Scholar
  51. Evans, T.C.: Selection of radioautographic technique for problems in biology. Nucleonics 3, 52–59 (1948).Google Scholar
  52. Falk, G.J., King, R.C.: Radioautographic efficiency for tritium as a function of section thickness. Radiat. Res. 20, 466–470 (1963).PubMedCrossRefGoogle Scholar
  53. Feinendegen, L.E.: Autoradiographie der wasserlöslichen Substanzen. Acta histochem. (Jena), Suppl. 8, 107–114 (1968).Google Scholar
  54. Feinendegen, L.E., Bond, V.P.: Differential uptake of 3H-thymidine into the soluble fraction of single bone marrow cells, determined by autoradiography. Exp. Cell Res. 27, 474–484 (1962).PubMedCrossRefGoogle Scholar
  55. Feinendegen, L.E., Bond, V.P., Hughes, W.L.: Physiological thymidine reutilization in rat bone marrow. Proc. Soc. exp. Biol. (N.Y.) 122, 448 (1966).Google Scholar
  56. Feinendegen, L. E., Bond, V. P., Shreeve, W. W., Painter, R.B.: RNA and DNA metabolism in human tissue culture cells studied with tritiated cytidine. Exp. Cell Res. 19, 443–459 (1960).PubMedCrossRefGoogle Scholar
  57. Fischer, H. A., Werner, G.: Autoradiography. Berlin-New York: Walter de Gruyter 1971.Google Scholar
  58. Fitzgerald, P.J., Eidinoff, M. L., Knoll, J.E., Simmel, E.B.: Tritium in radiography. Science 114, 494–498 (1951).PubMedCrossRefGoogle Scholar
  59. Frieser, H., Heimann, G., Ranz, E.: Einwirkung radioaktiver Nuklide auf photographische Schichten. Phot. Korresp. 98, 131–140 (1962).Google Scholar
  60. Galassi, L.: Delayed and direct labeling after a systemic injection of thymidine-3H. J. Histochem. Cytochem. 15, 565–572 (1967).PubMedCrossRefGoogle Scholar
  61. Glendenin, L.E., Solomon, K.A.: Self-absorption and backscattering of β-radiation. Science 112, 623–626 (1950).PubMedCrossRefGoogle Scholar
  62. Glocker, R.: Das photographische Schwärzungsgesetz für Elektronenstrahlen verschiedener Energie. Z. Physik 160, 568–572 (1960).CrossRefGoogle Scholar
  63. Goldstein, D.J., Williams, M.A.: Quantitative autoradiography: An evaluation of visual grain counting, reflectance microscopy, gross absorbance measurements and flying spot microdensitometry. J. Microscopy 94, 215–239 (1971).CrossRefGoogle Scholar
  64. Gross, J., Bogoroch, R., Nadler, M.J., Leblond, C.P.: The theory and methods of the radio- autographic localization of radioelements in tissues. Amer. J. Roentgenol. 65, 420–458 (1951).Google Scholar
  65. Harbers, E.: Autoradiographie als histochemisches Untersuchungsverfahren. In: W. Graumann und K. Neumann (Hrsg.), Handbuch der Histochemie, Bd. I/1, S. 400–598. Stuttgart: G. Fischer 1958.Google Scholar
  66. Harris, H.: Breakdown of nuclear ribonucleic acid in the presence of actinomycin D. Nature (Lond.) 202, 1301–1303 (1964).CrossRefGoogle Scholar
  67. Heiniger, H.J., Feinendegen, L.E., BÜrki, K.: Reutilization of thymidine in various groups of rat bone marrow cells. Blood 37, 340–348 (1971a).PubMedGoogle Scholar
  68. Heiniger, H.J., Friedrich, G., Feinendegen, L.E., Cantelmo, F.: Reutilization of 5-125I-iodo- 2´-deoxyuridine and 3H-thymidine in regenerating liver of mice. Proc. Soc. exp. Biol. (N.Y.) 137, 1381–1384 (1971b).Google Scholar
  69. Hell, E., Berry, R.J., Lajtha, L.G.: A pitfall in high specific activity tracer studies. Nature (Lond.) 185, 47 (1960).CrossRefGoogle Scholar
  70. Herrmann, W., Hartmann, G., Brust, R.: Das Auflösungsvermögen mikroautoradiographischer Aufnahmen in Abhängigkeit von der Energie der verwendeten β-Strahlung (Teil I). Atompraxis 9, 315–320 (1961).Google Scholar
  71. Herz, R.H.: Photographic fundamentals of autoradiography. Nucleonics 8, 24–39 (1951).Google Scholar
  72. Herz, R.H.: Methods to improve the performance of stripping emulsions. Lab. Invest. 8, 71–75 (1959).PubMedGoogle Scholar
  73. Herz, R.H.: The photographic action of ionizing radiations. New York-London-Sidney-Toronto: John Wiley & Sons Inc. 1969.Google Scholar
  74. Hughes, W.L., Bond, V.P., Brecher, G., Cronkite, E.P., Painter, R.B., Quastler, H, Sherman, F.G.: Cellular proliferation in the mouse as revealed by autoradiography with tritiated thymidine. Proc. nat. Acad. Sci. (Wash.) 44, 476–483 (1958).CrossRefGoogle Scholar
  75. Hunt, W.L., Foote, R.H.: Efficiency of liquid scintillation counting and autoradiography for detecting tritium in spermatozoa. Radiat. Res. 31, 63–73 (1967).PubMedCrossRefGoogle Scholar
  76. James, T.H., Fortmiller, L.J.: Dependence of covering power and spectral absorption of developed silver on temperature and composition of the developer. Phot. Sci. Eng. 5, 297–304 (1961).Google Scholar
  77. James, T.H., Higgins, G.C.: Fundamentals of photographic theory. New York: John Wieley & Sons, Inc. 1948.Google Scholar
  78. James, T.H., Kornfeld, G.: Reduction of silver halides and the mechanism of photographic development. Chem. Rev. 30, 1–32 (1942).CrossRefGoogle Scholar
  79. Jowsey, J.: Densitometry of photographic images. J. appl. Physiol. 21, 309–312 (1966).PubMedGoogle Scholar
  80. Jowsey, J., Lafferty, W., Rabinowitz, J.: Analysis of distribution of Ca45 in dog bone by a quantitative autoradiographic method. J. Bone Jt Surg. A 47, 359–370 (1965).Google Scholar
  81. Karnovsky, M.L., Foster, J.M., Gidez, L.I., Hagerman, D.D., Robinson, C.V., Solomon, A.K., Villee, C.A.: Correction factors for comparing activities of different carbon-14-labeled compounds assayed in flow proportional counter. Analyt. Chem. 27, 352–354 (1955).CrossRefGoogle Scholar
  82. Kisieleski, W.E., Baserga, R., Vaupotic, J.: The correlation of autoradiographic grain counts and tritium concentration in tissue sections containing tritiated thymidine. Radiat. Res. 15, 341–348 (1961).PubMedCrossRefGoogle Scholar
  83. Klein, E.: Die Beziehung zwischen der Schwärzung und der Größe der entwickelten Silberaggregate. Z. Elektrochem. 62, 993–999 (1958).Google Scholar
  84. Kopriwa, B.M., Leblond, C.P.: Improvements in the coating techniques of radioautography. J. Histochem. Cytochem. 10, 269–284 (1962).CrossRefGoogle Scholar
  85. Korr, H., Fischer, H.A., Seiler, N., Werner, G.: Cholesterinkristalle in Kryostat-Gefrierschnitten von nervösem Gewebe als Ursache von Artefakten in Autoradiogrammen. Histochemie 23, 138–143 (1970).PubMedCrossRefGoogle Scholar
  86. Kutzim, H.: Die quantitative Bestimmung der Verteilung von S35-Sulfat bei der Maus mittels Autoradiographie. Nucl.-Med. (Stuttg.) 3, 39–50 (1963).Google Scholar
  87. Lajtha, L.G., Oliver, R.: The application of autoradiography in the study of nucleic acid metabolism. Lab. Invest. 8, 214–224 (1959).PubMedGoogle Scholar
  88. Lamerton, L.F., Harriss, E.B.: Resolution and sensitivity considerations in autoradiography. J. Phot. Sci. 2, 135–144 (1954).Google Scholar
  89. Lang, W., Maurer, W.: Zur Verwendbarkeit von feulgen-gefärbten Schnitten für quantitative Autoradiographie mit markiertem Thymidin. Exp. Cell Res. 39, 1–9 (1965).PubMedCrossRefGoogle Scholar
  90. Lang, W., Muller, D., Maurer, W.: Prozentuale Beteiligung von exogenem Thymidin an der Synthese von DNS-Thymin in Geweben der Maus und in HeLa-Zellen. Exp. Cell Res. 49, 558–571 (1968).PubMedCrossRefGoogle Scholar
  91. Lang, W., Pilgrim, Ch., Maurer, W.: Prozentualer Anteil von 3H- oder 14C-Thymidin an der DNS-Synthese von Zellarten der Maus. Naturwissenschaften 53, 210 (1966).CrossRefGoogle Scholar
  92. Levi, H.: A discussion of recent advances towards quantitative autoradiography. Exp. Cell Res., Suppl. 4, 207–221 (1957).Google Scholar
  93. Levi, H., Hogben, A.S.: Quantitative beta track autoradiography with nuclear track emulsions. Dan. Mat.-Fys. Medd. No 9 (1955).Google Scholar
  94. Levi, H., Rogers, A.W., Weis Bentzon, M., Nielsen, A.: On the quantitative evaluation of auto- radiograms. Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd. 33, No 11 (1963).Google Scholar
  95. Levinthal, C., Thomas, C.A., Jr.: Molecular autoradiography: The β-ray counting from single virus particles and DNA molecules in nuclear emulsions. Biochim. biophys. Acta (Amst.) 23, 453–465 (1957).CrossRefGoogle Scholar
  96. Libby, W.F.: Simple absolute measurement technique for beta radioactivity. Analyt. Chem. 29, 1566–1570 (1957).CrossRefGoogle Scholar
  97. Loevinger, R.: The dosimetry of beta sources in tissue. The point-source function. Radiology 66, 55–62 (1956).Google Scholar
  98. Mamul, Ya. V.: Quantitative autoradiography using a radioactive wedge. Int. J. appl. Radiat. 1, 178–183 (1956).PubMedCrossRefGoogle Scholar
  99. Mann, W.B.: The preparation and maintenance of standards of radioactivity. Int. J. appl. Radiat. 1, 3–23 (1956).CrossRefGoogle Scholar
  100. Marshall, J.H., Rowland, R.E., Jowsey, J.: Microscopic metabolism of calcium in bone. II. Quantitative autoradiography. Radiat. Res. 10, 213–233 (1959).Google Scholar
  101. Maurer, W.: Methodisches zur autoradiographischen Untersuchung des Eiweiß-Stoffwechsels. Acta histochem. (Jena), Suppl. XII, 65–72 (1972).Google Scholar
  102. Maurer, W., Primbsch, E.: Größe der β-Selbstabsorption bei der 3H-Autoradiographie. Exp. Cell Res. 33, 8–18 (1964).PubMedCrossRefGoogle Scholar
  103. Maurer, W., Schultze, B.: Problems in autoradiographic studies of DNA, RNA, and protein synthesis. In: L.J. Roth and W.E. Stumpf (eds.), Autoradiography of diffusible substances, p. 15–28. New York-London: Academic Press 1969.Google Scholar
  104. Mertz, M.: Bestimmung der Silberkorngröße in Autoradiogrammen bei Auflicht und Durchlicht. Histochemie 17, 128–137 (1969).PubMedCrossRefGoogle Scholar
  105. Micou, J., Goldstein, L.: A simple method to reduce the strain in manual grain counting of autoradiographs. Stain Technol. 34, 347–348 (1959).Google Scholar
  106. Moffat, D.J., Youngberg, S.P., Metcalf, W.K.: The validity of autoradiographic labeling. Cell Tiss. Kinet. 4, 293–295 (1971).Google Scholar
  107. Nadler, M.J.: Some theoretical aspects of radioautography. Canad. J. med. Sci. 29, 182–194 (1951).Google Scholar
  108. Newton, A., Dendy, P.P., Smith, C.L., Wildy, P.: A pool size problem associated with the use of tritiated thymidine. Nature (Lond.) 194, 886–887 (1962).CrossRefGoogle Scholar
  109. Niklas, A., Maurer, W.: Autoradiographie. In: Hoppe-Seyler/Thierfelder, Handbuch der physiologisch- und pathologisch-chemischen Analyse, 10. Aufl., Bd. II, S. 734-773. Berlin-Göttingen- Heidelberg: Springer 1955.Google Scholar
  110. Niklas, A., Quincke, E., Maurer, W., Neyen, A.: Messung der Neubildungsraten und biologischen Halbwertszeiten des Eiweißes einzelner Organe und Zellgruppen bei der Ratte. Biochem. Z. 330, 1–20 (1958).PubMedGoogle Scholar
  111. Nutting, P.G.: On the absorption of light in heterogeneous media. Phil. Mag. 26, 423–426 (1913).Google Scholar
  112. Odeblad, E.: Contributions to the theory and technique of quantitative autoradiography with P32 with special reference to the granulosa tissue of the Graafian follicles in the rabbit. Acta radiol. (Stockh.), Suppl. 93, 1–123 (1952).Google Scholar
  113. Oja, H.K., Oja, S.S., Hasan, J.: Calibration of stripping film autoradiography in sections of rat liver labelled with tritium. Exp. Cell Res. 45, 1–10 (1966).CrossRefGoogle Scholar
  114. Ostrowski, K., Sawicki, W.: Photomicrographic method for counting photographic grains in autoradiograms. Exp. Cell Res. 24, 625–628 (1961).PubMedCrossRefGoogle Scholar
  115. Painter, R.B., Rasmussen, R.E.: A pitfall of low specific activity radioactive thymidine. Nature (Lond.) 201, 409–410 (1963).CrossRefGoogle Scholar
  116. Pelc, S.R.: Autoradiograph technique. Nature (Lond.) 160, 749–750 (1947).CrossRefGoogle Scholar
  117. Pelc, S.R.: The stripping-film technique of autoradiography. Int. J. appl. Radiat. 1, 172–177 (1956).PubMedCrossRefGoogle Scholar
  118. Pelc, S.R., Appleton, T.C., Welton, M.E.: State of light autoradiography. In: C.P. Leblond and K.B. Warren (eds.), The use of radioautography in investigating protein synthesis, p. 9–21. New York and London: Academic Press 1965.Google Scholar
  119. Pelc, S.R., Howard, A.: Techniques of autoradiography and the application of the strippingfilm method to problems of nuclear metabolism. Brit. med. Bull. 8, 132–135 (1952).PubMedGoogle Scholar
  120. Pelc, S.R., Welton, M.G.E.: Quantitative evaluation of tritium in autoradiography and biochemistry. Nature (Lond.) 216, 925–927 (1967).CrossRefGoogle Scholar
  121. Perry, R.P.: Quantitative autoradiography. In: D.M. Prescott (ed.), Methods in cell physiology, vol. I, p. 305–326. New York: Academic Press 1964.Google Scholar
  122. Peters, T., Jr., Ashley, C.A.: An artefact in radiography due to binding of free amino acids to tissues by fixatives. J. Cell Biol. 33, 53–60 (1967).PubMedCrossRefGoogle Scholar
  123. Peters, T., Jr., Ashley, C.A.: Binding of amino acids to tissues by fixatives. In: L.J. Roth and W.E. Stumpf (eds.), Autoradiography of diffusible substances, p. 267–278. New York-London: Academic Press 1969.Google Scholar
  124. Poddar, R.K.: On the quantitative relation between isotopic beta radiation and its photographic response. Indian J. Phys. 29, 189–198 (1955).Google Scholar
  125. Przybylski, R.J.: Principles of quantitative autoradiography. In: G.L. Wied and G.F. Bahr (eds.), Introduction to quantitative cytochemistry-II, p. 477–505. New York-London: Academic Press 1970.Google Scholar
  126. Quastler, H.: Effects of irradiation on synthesis and loss of DNA. In: M. Haissinsky (ed.), Actions chimiques et biologiques des radiations, p. 147–186. Paris: Masson & Cie. 1963a.Google Scholar
  127. Quastler, H.: The analysis of cell population kinetics. In: L.F. Lamerton and R.J.M. Fry (eds.), Cell proliferation, p. 18–36. Oxford: Blackwell Sci. Publ. 1963b.Google Scholar
  128. Riggs, T.R., Walker, L.M.: Some relations between active transport of free amino acids into cells and their incorporation into protein. J. biol. Chem. 238, 2663–2668 (1963).PubMedGoogle Scholar
  129. Ritzen, M.: Mast cells and 5-HT. Uptake of labelled 5-hydroxytryptamine (5-HT) and 5-hydroxy- tryptophan in relation to storage of 5-HT in individual rat mast cells. Acta physiol. scand. 69, 1–12 (1967a).CrossRefGoogle Scholar
  130. Ritzen, M.: A method for the autoradiographic determination of absolute specific radioactivity in cells. Exp. Cell Res. 45, 250–252 (1967b).PubMedCrossRefGoogle Scholar
  131. Ritzen, M.: A simple method for determination of absolute “specific activity” in individual cells. Acta histochem. (Jena), Suppl. 8, 275–278 (1968).Google Scholar
  132. Robertson, J.S., Bond, V.P., Cronkite, E.P.: Resolution and image spread in autoradiographs of tritium-labeled cells. Int. J. appl. Radiat. 7, 33–37 (1959).PubMedCrossRefGoogle Scholar
  133. Robinson, S.H., Brecher, G., Lourie, I.S., Haley, J.E.: Leukocyte labeling in rats during and after continuous infusion of tritiated thymidine: Implications for lymphocyte longevity and DNA reutilization. Blood 26, 281–295 (1965).PubMedGoogle Scholar
  134. Rogers, A.W.: A simple photometric device for the quantitation of silver grains in autoradiographs of tissue sections. Exp. Cell Res. 24, 228–239 (1961).PubMedCrossRefGoogle Scholar
  135. Rogers, A.W.: Techniques of autoradiography. Amsterdam-London-New York: Elsevier Publishing Company 1967.Google Scholar
  136. Rogers, A.W., Darzynkiewicz, Z., Barnard, E.A., Salpeter, M.M.: Number and location of acetylcholinesterase molecules at motor endplates of the mouse. Nature (Lond.) 210, 1003–1006 (1966).CrossRefGoogle Scholar
  137. Rogers, A.W., John, P.N.: Latent image stability in autoradiographs of diffusible substances. In: L.J. Roth and W.E. Stumpf (eds.), Autoradiography of diffusible substances, p. 51–68. New York- London: Academic Press 1969.Google Scholar
  138. Roth, L.J.: Autoradiography of diffusible substances. In: L.J. Roth and W.E. Stumpf (eds.), Autoradiography of diffusible substances, p. 1–13. New York-London: Academic Press 1969.Google Scholar
  139. Rubini, J.R., Cronkite, E.P., Bond, V.P., Fliedner, T.M.: The metabolism and fate of tritiated thymidine in man. J. clin. Invest. 39, 909–918 (1960).PubMedCrossRefGoogle Scholar
  140. Sandritter, W., Hartleib, J.: Quantitative Untersuchungen über den Nukleinsäureverlust des Gewebes bei Fixierung und Einbettung. Experientia (Basel) 11, 313–314 (1955).CrossRefGoogle Scholar
  141. Sawicki, W., Pawinska, M.: Effect of drying on unexposed autoradiographic emulsion in relation to background. Stain Technol. 40, 67–68 (1965).PubMedGoogle Scholar
  142. Schmid, W.: Autoradiography of human chromosomes. In: J.J. Yunis (ed.), Human chromosome methodology, p. 91–110. New York-London: Academic Press 1965.Google Scholar
  143. Schneider, G., Maurer, W.: Autoradiographische Untersuchung über den Einbau von H-3-Cytidin in die Kerne einiger Zellarten der Maus und über den Einfluß des Fixationsmittels auf die H-3-Aktivität. Acta histochem. (Jena) 15, 171–181 (1963).Google Scholar
  144. Schultze, B.: Die Orthologie und Pathologie des Nukleinsäure- und Eiweißstoffwechsels der Zelle im Autoradiogramm. In: H.W. Altmann, F. Buchner, H. Cottier, G. Holle, E. Letterer, W. Masshoff, H. Meessen, F. Roulet, G. Seifert, G. Siebert, und A. Studer (Hrsg.), Handbuch der allgemeinen Pathologie, Bd. II/5, S. 466–670. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  145. Schultze, B.: Autoradiography at the cellular level. In: A. W. Pollister (ed.), Physical techniques in biological research, 2nd ed., vol. III, part B. New York-London: Academic Press 1969.Google Scholar
  146. Seliger, H.H.: The application of standards of radioactivity. Int. J. appl. Radiat. 1, 215–232 (1956).PubMedCrossRefGoogle Scholar
  147. Stillström, J.: Grain count corrections in autoradiography. Int. J. appl. Radiat. 14, 113–118 (1963).PubMedCrossRefGoogle Scholar
  148. Stillström, J.: Grain count corrections in autoradiography-II. Int. J. appl. Radiat. 16, 357–363 (1965).CrossRefGoogle Scholar
  149. Stöcker, E., Muller, H.-A.: Zur chemischen Induktion von Silberkörnern im Stripping Film bei der Orcein-Quetsch-Technik. Histochemie 11, 167–170 (1967).PubMedCrossRefGoogle Scholar
  150. Stryckmans, P., Cronkite, E.P., Fache, J., Fliedner, T.M., Ramos, J.: Deoxyribonucleic acid synthesis time of erythropoietic and granulopoietic cells in human beings. Nature (Lond.) 211, 717–720 (1966).CrossRefGoogle Scholar
  151. Stumpf, W.E., Roth, L.J.: Vacuum freeze drying of frozen sections for dry-mounting, high-resolution autoradiography. Stain Technol. 39, 219–223 (1964).PubMedGoogle Scholar
  152. Stumpf, W.E., Roth, L.J.: High resolution autoradiography with dry mounted, freeze-dried frozen sections. Comparative study of six methods using two diffusible compounds 3H-estradiol and 3H-mesobilirubinogen. J. Histochem. Cytochem. 14, 274–284 (1966).PubMedCrossRefGoogle Scholar
  153. Stumpf, W.E., Roth, L.J.: Freeze-drying of small tissue samples and thin frozen sections below -60°C. J. Histochem. Cytochem. 15, 243–251 (1967).PubMedCrossRefGoogle Scholar
  154. Stumpf, W.E., Roth, L.J.: Autoradiography using dry-mounted freeze-dried sections. In: L.J. Roth and W.E. Stumpf (eds.), Autoradiography of diffusible substances, p. 69-80. New York-London: Academic Press 1969.Google Scholar
  155. Taylor, J.H.: Autoradiography at the cellular level. In: G. Oster and A. W. Pollister (eds.), Physical techniques in biological research, vol. III, p. 545–580. New York: Academic Press 1956.Google Scholar
  156. Torelli, U., Grossi, G., Artusi, T., Emilia, G., Attiya, I.R., Mauri, C.: RNA and protein metabolism in normal human erythroblasts and granuloblasts. Acta haemat. (Basel) 32, 271–279 (1964a).CrossRefGoogle Scholar
  157. Torelli, U., Grossi, G., Artusi, T., Emilia, G., Attiya, I.R., Mauri, C.: RNA turnover rates in normal peripheral mononuclear leucocytes. Exp. Cell Res. 36, 502–509 (1964b).PubMedCrossRefGoogle Scholar
  158. Torelli, U., Artusi, T., Grossi, G., Emilia, G., Mauri, C.: An unstable ribonucleic acid in normal human erythroblasts. Nature (Lond.) 207, 755–757 (1965).CrossRefGoogle Scholar
  159. Waser, P.G., LÜthi, U.: Über die Fixierung von 14C-Curarin in der Endplatte. Helv. physiol. pharmacol. Acta 20, 237–251 (1962).PubMedGoogle Scholar
  160. Williams, A.I.: A method for prevention of leaching and fogging in autoradiographs. Nucleonics 8, 10–14 (1951).PubMedGoogle Scholar
  161. Wimber, D.E., Quastler, H., Stein, O., Wimber, D.: Analysis of tritium incorporation into individual cells by autoradiography of squash preparations. J. biophys. biochem. Cytol. 8, 327–331 (1960).PubMedCrossRefGoogle Scholar
  162. Yankwich, P.E., Weigl, J.W.: The relation of backscattering to self-absorption in routine beta-ray measurements. Science 107, 651–653 (1948).PubMedCrossRefGoogle Scholar
  163. Zajac, B., Ross, M.A.S.: Calibration of electron-sensitive emulsions. Nature (Lond.) 164, 311–312 (1949).CrossRefGoogle Scholar
  164. Zetterberg, A., Killander, D.: Quantitative cytophotometric and autoradiographic studies on the rate of protein synthesis during interphase in mouse fibroblasts in vitro. Exp. Cell Res. 40, 1–11 (1965).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • Volker Neuhoff
    • 1
  1. 1.Medizin (Arbeitsgruppe Neurochemie)Max-Planck-Institut für ExperimentelleGöttingenGermany

Personalised recommendations