Micro-Electrophoresis on Polyacrylamide Gels

  • Volker Neuhoff
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 14)


Polyacrylamide gels were introduced in 1959 by Raymond and Weintraub, as supports for electrophoretic separations. The polyacrylamide gel is produced by polymerising acrylamide, with N,N-methylenebisacrylamide or ethylene diacrylate as the cross-linking component. Catalytic redox systems, which yield free radicals, are used to initate copolymerisation (e.g. ammonium peroxydisulphate and N, N, N´, N´-tetramethylethylene diamine). Electrophoresis on polyacrylamide gels is now in general use as a laboratory technique. Its popularity owes much to the transparency of the gel, its mechanical stability and inertness, its stability over a very wide range of pH and its insolubility in most of the solvents commonly used for electrophoresis. The gels can be prepared reliably and reproducibly from analytically pure starting materials, and possesses the decisive advantage that by varying the proportions of the starting materials, gels of different density and pore diameter can be prepared. Various other substances can also be copolymerised into these gels.


Disc Electrophoresis Electrode Buffer Capillary Pipette Capillary Attraction Ammonium Peroxydisulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, H. C., Burton, R. M., Fishman, M. A., Mitchell, R. F., Prensky, A.L.: Partial characterization of a new myelin protein component. J. Neurochem. 19, 2083–2089 (1972).PubMedCrossRefGoogle Scholar
  2. Allen, R.C., Moore, D.J., Dilworth, R.H.: New rapid electrophoresis procedure employing pulsed power in gradient gels at a continuous pH: The effect of various discontinuous buffer systems on esterase zymograms. J. Histochem. Cytochem. 17, 189–190 (1969).Google Scholar
  3. Althaus, H.H., Briel, G., Dames, W., Neuhoff, V.: Zelluläre und molekulare Grundlagen der nervösen Erregungsspeicherung. 2. Neurochemische Mikroanalysen des Rückenmarks der Katze nach posttetanischer Potenzierung monosynaptischer Reflexe. In: Sonderforschungsbereich 33, Nervensystem und biologische Information, Göttingen 1969–1972, S. 107–121.Google Scholar
  4. Ansorg, R., Dames, W., Neuhoff, V.: Micro disc electrophorese von Hirnproteinen. II. Untersuchung verschiedener Extraktionsverfahren. Arzneimittel-Forsch. (Drug. Res.) 21, 699–710 (1971).Google Scholar
  5. Ansorg, R., Neuhoff, V.: Micro disc electrophoresis of brain proteins. III. Heterogenity of the nervous specific protein S-100. Int. J. Neurosci. 2, 151–160 (1971).PubMedCrossRefGoogle Scholar
  6. Apella, E., Markert, C.L.: Dissociation of lactate dehydrogenase into subunits with guanidine hydrochloride. Biochem. biophys. Res. Commun. 6, 171–176 (1961).CrossRefGoogle Scholar
  7. Bispink, G., Dames, W.: Personal commutation.Google Scholar
  8. Bonavita, V., Guarneri, R.: Lactate-dehydrogenase isoenzymes in nervous tissue: III. Regional distribution on ox brain. J. Neurochem. 10, 755–764 (1963).PubMedCrossRefGoogle Scholar
  9. Brewer, G.J., Sing, C.F.: An introduction to isoenzyme techniques. New York and London: Academic Press 1970.Google Scholar
  10. Brinster, R. L.: A method for in vitro cultivation of mouse ova from two-cell to blastocyst. Exp. Cell Res. 32, 205–208 (1963).PubMedCrossRefGoogle Scholar
  11. Burgess, R.R.: Separation and characterization of the subunits of ribonucleic acid polymerase. J. biol. Chem. 244, 6168–6178 (1969).PubMedGoogle Scholar
  12. Burgess, R.R.: RNA-Polymerase. Ann. Rev. Biochem. 40, 711–740 (1971).PubMedCrossRefGoogle Scholar
  13. Burgess, R.R., Travers, A.: Escherichia coli RNA polymerase: purification, subunit structure, and factor requirements. Fed. Proc. 29, 1164–1169 (1970).PubMedGoogle Scholar
  14. Cahn, R.D., Kaplan, N.O., Levene, L., Zwilling, E.: Nature and development of lactic dehydrogenase. Science 136, 962–969 (1962).PubMedCrossRefGoogle Scholar
  15. Catsimpoolas, N.: Micro isoelectric focusing in polyacrylamide gel columns. Analyt. Biochem. 26, 480–482 (1968).PubMedCrossRefGoogle Scholar
  16. Choules, G.L., Zimm, B.H.: An acrylamide gel soluble in scintillation fluid. Its application to electrophoresis at neutral and low pH. Analyt. Biochem. 13, 336–344 (1965).PubMedCrossRefGoogle Scholar
  17. Conway-Jacobs, A., Lewin, L.M.: Isoelectric focusing in acrylamide gels: Use of amphoteric dyes as internal markers for determination of isoelectric points. Analyt. Biochem. 43, 394–400 (1971).PubMedCrossRefGoogle Scholar
  18. Cremer, Th., Dames, W., Neuhoff, V.: Micro-disc electrophoresis and quantitative assay of glucose- 6-phosphate dehydrogenase at the cellular level. Hoppe-Seylers Z. physiol. Chem. 353, 1317–1329 (1972).PubMedCrossRefGoogle Scholar
  19. Dale, G., Latner, A.: Isoelectric focusing in polyacrylamide gels. Lancet 1968I, 847–848.Google Scholar
  20. Dahlberg, A.E., Dingman, C.W., Peacock, A.C.: Electrophoretic characterization of bacterial polyribosomes in agarose acrylamide composite gels. J. molec. Biol. 41, 139–147 (1969).PubMedCrossRefGoogle Scholar
  21. Dames, W., Maurer, H.R., Neuhoff, V.: In preparation.Google Scholar
  22. Davies, B.J.: Disc-electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404–427 (1964).CrossRefGoogle Scholar
  23. Doerr, P., Chrambach, A.: Anti-estradiol antibodies: isoelectric focusing in polyacrylamide gel. Analyt. Biochem. 42, 96–107 (1971).PubMedCrossRefGoogle Scholar
  24. Egyhazi, E., Daneholt, B., Edström, J.-E., Lambert, B., Ringborg, U.: Low molecular weight RNA in cell components of chironomus tentons salivary glands. J. molec. Biol. 44, 517–532 (1969).PubMedCrossRefGoogle Scholar
  25. Gainer, H.: Isoelectric focusing of proteins at 10-10 to 10-9 gram level. Analyt. Biochem. (in press).Google Scholar
  26. Gainer, H.: Micro disc electrophoresis in sodium dodecyl sulphate: An application to the study of protein synthesis in individual, identified neurons. Analyt. Biochem. 44, 589–605 (1971).PubMedCrossRefGoogle Scholar
  27. Glaser, L., Brown, D.H.: Purification and properties of D-glucose-6-phosphate dehydrogenase. J. biol. Chem. 216, 67–69 (1955).PubMedGoogle Scholar
  28. Griffith, A., LaVelle, A.: Developmental protein changes in normal and chromatolytic facial nerve nuclear regions. Exp. Neurol. 33, 360–371 (1971).PubMedCrossRefGoogle Scholar
  29. Grossbach, U.: Acrylamide gel electrophoresis in capillary columns. Biochim. biophys. Acta (Amst.) 107, 180–182 (1965).CrossRefGoogle Scholar
  30. Grossbach, U.: Chromosomen-Aktivität und biochemische Zelldifferenzierung in den Speicheldrüsen von Camptochironomus. Chromosoma (Berl.) 28, 136–187 (1969).CrossRefGoogle Scholar
  31. Grossbach, U.: Chromomeren-Aktivität und zellspezifische Proteine bei Camptochironomus. Untersuchungen zur Zelldifferenzierung in den Speicheldrüsen von C. tentans und C. pallidivittatus. Habilitationsschrift, Universität Stuttgart-Hohenheim, 1971.Google Scholar
  32. Grossbach, U.: Chromosomen-Struktur und Zell-Funktion. Mitt. Max-Planck-Ges., H. 2. 93–108 (1971).Google Scholar
  33. Grossbach, U.: Micro electrophoresis and micro isoelectric focusing in capillary gels. In: Small conference on electrophoresis and isoelectric focusing in polyacrylamide gel: standardization, biochemical and clinical needs, new methods. October 1972 at Tübingen, Germany.Google Scholar
  34. Grossbach, U., Weinstein, I.B.: Separation of ribonucleic acids by polyacrylamide gel electrophoresis. Analyt. Biochem. 22, 311–320 (1968).PubMedCrossRefGoogle Scholar
  35. Grzeschik, K.H., Allderdice, P.W., Grzeschik, A., Opitz, J.M., Müller, O.J., Siniscalco, M.: Cytological mapping of human X-linked genes by use of somatic cell hybrids involving an X-autosome translocation. Proc. nat. Acad. Sci. (Wash.) 69, 69–73 (1972).CrossRefGoogle Scholar
  36. Haglund, H.: Isoelectric focusing in pH gradients. A technique for fractionation and characterization of ampholytes. In: Methods of biochemical analysis, ed. by D. Glick, vol. 19, p. 1–104. New York, London, Sydney, Toronto: Intersci. Publ. J. Wiley & Sons, Inc. 1971.CrossRefGoogle Scholar
  37. Harris, H., Watkins, J.: Hybrid cells from mouse and man: artificial heterokaryons of mammalian cells from different species. Nature (Lond.) 205, 640–646 (1965).CrossRefGoogle Scholar
  38. Hydén, H., Bjurstam, K., McEwen, B.: Protein separation at the cellular level by micro-disc electrophoresis. Analyt. Biochem. 17, 1–15 (1966).PubMedCrossRefGoogle Scholar
  39. Hydén, H., Lange, P.W.: Micro-electrophoretic determination of protein and protein synthesis in the 10-9 to 10-7 gram range. J. Chromatog. 35, 336–351 (1968).CrossRefGoogle Scholar
  40. Hydén, H., Lange, P. W.: Protein changes in different brain areas as a function of intermittent training. Proc. nat. Acad. Sci (Wash.) 69, 1980–1984 (1972).CrossRefGoogle Scholar
  41. Hydén, H., Lange, P. W.: Protein synthesis in hippocampal nerve cells during re-reversal of handedness in rats. Brain Res. 45, 314–317 (1972).PubMedCrossRefGoogle Scholar
  42. Katzman, R. L.: The inadequacy of sodium dodecyl sulfate as a dissociative agent for brain proteins and glycoproteins. Biochim. biophys. Acta (Amst.) 266, 269–272 (1972).CrossRefGoogle Scholar
  43. Kolin, A.: Separation and concentration of proteins in a pH field combined with an electric field. J. Chem. Phys. 22, 1628–1629 (1954).CrossRefGoogle Scholar
  44. Konings, R.N.H., Bloemendal, H.: Synthesis of lens protein in vitro. 3. Ribonucleic acid with template activity isolated from calf lens tissue. Europ. J. Biochem. 7, 165–173 (1969).PubMedCrossRefGoogle Scholar
  45. Kopperschläger, G., Diezel, W., Bierwagen, B., Hofmann, E.: Molekulargewichtsbestimmungen durch Polyacrylamid Gel-Elektrophorese unter Verwendung eines linearen Gelgradienten. FEBS Letters 5, 221–224 (1969).PubMedCrossRefGoogle Scholar
  46. Kowalewski, S.L.: Die Isoenzyme der Lactatdehydrogenase. In: Biochemie und Klinik, Monographien in zwangloser Folge, ed. by G. Weitzel und N. Zöllner. Stuttgart: G. Thieme 1972.Google Scholar
  47. Loening, U.E.: The determination of the molecular weight of ribonucleic acid by polyacrylamide gel electrophoresis. Biochem. J. 113, 131–138 (1969).PubMedGoogle Scholar
  48. Löhr, G.W., Waller, H.D.: Glucose-6-phosphate dehydrogenase. In: Methoden der enzymatischen Analyse, ed. H.U. Bergmeyer, 2nd ed., p. 599–606. Weinheim: Verlag Chemie 1970.Google Scholar
  49. Louis, B.G., Fitt, P.S.: Isolation and properties of highly purified Halobacterium cutirubrum deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem. J. 127, 69–80 (1972).PubMedGoogle Scholar
  50. Lowry, O.H., Passonneau, J.V.: A flexible system of enzymatic analysis. New York and London: Academic Press 1972.Google Scholar
  51. Lowry, O.H., Passonneau, J.V., Schulz, D.W., Rock, M.K.: The measurement of pyridine nucleotides by enzymatic cycling. J. biol. Chem. 236, 2746–2755 (1961).PubMedGoogle Scholar
  52. Matsuoka, Y., Moore, G.E., Yagi, Y., Pressmann, D.: Production of free light chains of immunoglobulin by a hematopoetic cell line derived from a patient with multiple myeloma (32327). Proc. Soc. exp. Biol. (N.Y.) 125, 1246–1258 (1967).Google Scholar
  53. Maurer, H.R.: Disc electrophoresis and related techniques of polyacrylamide gel electrophoresis. Berlin-New York: Walter de Gruyter 1971.Google Scholar
  54. Maurer, H.R., Allen, R.C.: Useful buffer and gel systems for polyacrylamide gel electrophoresis. Z. klin. Chem. 10, 220–225 (1972).Google Scholar
  55. McEwen, B., Hydén, H.: Study of specific brain proteins on the semi-micro scale. J. Neurochem. 13, 823–833 (1966).PubMedCrossRefGoogle Scholar
  56. McPhie, P., Hounsell, J., Gratzer, W.B.: The specific cleavage of yeast ribosomol RNA with nuclease. Biochemistry 5, 988–993 (1966).PubMedCrossRefGoogle Scholar
  57. Miller, O. J., Cook, P. R., Meera Khan, P., Shin, S., Siniscalco, M.: Mitotic separation of two human X-linked genes in man-mouse somatic cell hybrids. Proc. nat. Acad. Sci. (Wash.) 68, 116–120 (1971).CrossRefGoogle Scholar
  58. Naumova, L.P.: Technika Mikroelektrophoresa na Smeshannych Blyakrylamid Agarosnych Geliach. Shkola Seminar Mikrometody Analysa Nukleinowych Kislot. Inst. Org. Cem. Novosibirsk/ UdSSR 17–23 (1971).Google Scholar
  59. Neuhoff, V.: Micro-Disc-Electrophorese von Hirnproteinen. Arneimittel-Forsch. 18, 35–39 (1968).Google Scholar
  60. Neuhoff, V., Lezius, A.: Nachweis der Substruktur von DNA-Polymerasen, der enzymatisch aktiven Proteinkomponente und ihrer Enzym-Substrat-Komplexe mit der Micro-Disc-Electrophorese. Hoppe-Seylers Z. physiol. Chem. 348, 1239 (1967).Google Scholar
  61. Neuhoff, V., Lezius, A.: Nachweis und Charakterisierung von DNS Polymerasen durch Micro-Disc- Electrophorese. Z. Naturforsch. 23b, 812–819 (1968).Google Scholar
  62. Neuhoff, V., Mühlberg, B., Meier, J.: Strom- und spannungskonstantes Netzgerät für die Micro- Disc-Electrophorese. Arzneimittel-Forsch. 17, 649–651 (1967).Google Scholar
  63. Neuhoff, V., Schill, W.-B.: Kombinierte Mikro-Disk-Elektrophorese und Mikro-Immunpräzipitation von Proteinen. Hoppe-Seylers Z. physiol. Chem. 349, 795–800 (1968).PubMedCrossRefGoogle Scholar
  64. Neuhoff, V., Schill, W.-B., Jacherts, D.: Nachweis einer RNA-abhängigen RNA-Replicase aus immunologisch kompetenten Zellen durch Mikro-Disk-Elektrophorese. Hoppe-Seylers Z. physiol. Chem. 351, 157–162 (1970).PubMedCrossRefGoogle Scholar
  65. Neuhoff, V., Schill, W.-B., Sternbach, H.: Mikro-Disk-elektrophoretische Analyse reiner DNAabhängiger RNA-Polymerase aus Escherichia coli. I. Struktur und Matrizen-abhängige Funktion. Hoppe-Seylers Z. physiol. Chem. 349, 1126–1136 (1968).PubMedCrossRefGoogle Scholar
  66. Neuhoff, V., Schill, W.-B., Sternbach, H.: Mikro-Disk-elektrophoretische Analyse reiner DNAabhängiger RNA-Polymerase aus E. coli. II. Vergleichende Analyse verschiedener Enzympräparate. Arzneimittel-Forsch. (Drug Res.) 19, 336–339 (1969a).Google Scholar
  67. Neuhoff, V., Schill, W.-B., Sternbach, H.: Mikro-Disk-elektrophoretische Analyse reiner DNAabhängiger RNA-Polymerase aus Escherichia coli. IV. Isolierung und Charakterisierung elektrophoretisch getrennter Enzymfraktionen. Hoppe-Seylers Z. physiol. Chem. 350, 767–774 (1969b).PubMedCrossRefGoogle Scholar
  68. Neuhoff, V., Schill, W.-B., Sternbach, H.: Microanalysis of pure deoxyribonucleic acid-dependent ribonucleic acid polymerase from Escherichia coli. Biochem. J. 117, 623–631 (1970).PubMedGoogle Scholar
  69. Novotny, G.E.K.: Untersuchung der Proteinbeschaffenheit funktioneller Systeme des Zentralnervensystems und deren Veränderung durch experimentelle Eingriffe. In: Sonderforschungsbereich 33, Nervensystem und biologische Information, Göttingen 1969–1972, p. 247–280.Google Scholar
  70. Oelschlegel, F.J., Jr., Stahlmann, M.A.: Cyanide sensitive tetrazolium oxidase and its role in dehydrogenase staining. Analyt. Biochem. 42, 338–341 (1971).CrossRefGoogle Scholar
  71. Ornstein, L.: Disc-electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci. 121, 321–349 (1964).PubMedCrossRefGoogle Scholar
  72. Pasantes-Morales, H., Klethi, J., Urban, P.E., Mandel, P.: Changes in the lactate and malate dehydrogenase isoenzyme patterns of chicken embryo brain and retina. J. Neurochem. 19, 1183– 1188 (1972).PubMedCrossRefGoogle Scholar
  73. Peacock, A., Dingman, C.W.: Analytical studies on nuclear ribonucleic acid using polyacrylamide gel electrophoresis. Biochemistry 7, 659–668 (1968).PubMedCrossRefGoogle Scholar
  74. Peakcock, A.C., Dingman, C.W.: Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry 6, 1818–1827 (1967).CrossRefGoogle Scholar
  75. Plagemann, P.G.W., Gregory, K.F., Wroblewski, F.: The electrophoretically distinct forms of mammalian lactic dehydrogenase: I. Distribution of lactic dehydrogenases in rabbit and human tissues. J. biol. Chem. 235, 2282–2287 (1960).PubMedGoogle Scholar
  76. Potter, M., Kuff, E.L.: Disorders in the differentiation of protein secretion in neoplastic plasma cells. J. molec. Biol. 9, 537–544 (1964).PubMedCrossRefGoogle Scholar
  77. Pun, J.Y., Lombrozo, K.: Microelectrophoresis of brain and pineal protein in polyacrylamide gel. Analyt. Biochem. 9, 9–20 (1964).PubMedCrossRefGoogle Scholar
  78. Quentin, C.-D., Neuhoff, V.: Micro-isoelectric focusing for the detection of LDH isoenzymes in different brain regions of rabbit. Int. J. Neurosci. 4, 17–24 (1972).PubMedCrossRefGoogle Scholar
  79. Raymond, S., Weintraub, L.: Acrylamide gel as a supporting medium for zone electrophoresis. Science 130, 711 (1959).PubMedCrossRefGoogle Scholar
  80. Reifenrath, R., Ellnel, J.: In preparation.Google Scholar
  81. Reynolds, J.A., Tanford, Ch.: The gross conformation of protein-sodium dodecyl sulfate complexes. J. biol. Chem. 245, 5161–5165 (1970).PubMedGoogle Scholar
  82. Riley, R.F., Coleman, M.K.: Isoelectric fractionation of proteins on a microsclae in polyacrylamide and agarose matrices. J. Lab. clin. Med. 72, 714–720 (1968).PubMedGoogle Scholar
  83. Ringborg, U., Egyhazy, E., Daneholt, B., Lambert, B.: Agarose acrylamide composite gels for microfractionation of RNA. Nature (Lond.) 220, 1037–1039 (1968).CrossRefGoogle Scholar
  84. Rose, I.A.: The use of kinetic isotope effects in the study of metabolic control. I. Degradation of glucose-l-D by the hexose monophosphate pathway. J. biol. Chem. 236, 603–609 (1961).PubMedGoogle Scholar
  85. Rüchel, R., Mesecke, S., Wolfrum, D.I., Neuhoff, V.: In preparation (1973).Google Scholar
  86. Ruddle, F.H., Chapman, V.M., Ricciuti, F., Murnane, M., Klebe, R., Meera Khan, P.: Linkage relationships of seventeen human gene loci as determined by man-mouse somatic cell hybride. Nature (Lond.) New Biol. 232, 69–73 (1971).Google Scholar
  87. Siepmann, R., Stegemann, H.: Enzym-Elektrophorese in Einschluß-Polymerisaten des Acrylamids. A: Amylasen, Phosphorylasen. Z. Naturforsch. 22 b, 949–955 (1967).Google Scholar
  88. Smeds, S., Bkörkman, U.: Micro-scale protein separation by electrophoresis in continuous polyacrylamide concentration gradients. J. Chromatogr. 71, 499–505 (1972).PubMedCrossRefGoogle Scholar
  89. Stegemann, H.: Enzym-Elektrophorese in Einschluß-Polymerisation des Acrylamids. B. Polygalakturonasen (Pektinasen). Hoppe-Seylers Z. physiol. Chem. 348, 951–952 (1967).Google Scholar
  90. Svensson, H.: Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients: I. The differential equation of state of solute concentrations at a steady state and its solution for simple cases. Acta chem. scand. 15, 325–341 (1961).CrossRefGoogle Scholar
  91. Vesterberg, O., Svensson, H.: Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients: IV. Further studies on the resolving power in connection with separation of myoglobins. Acta chem. scand. 20, 820–834 (1966).PubMedCrossRefGoogle Scholar
  92. Waehneldt, TV., Neuhoff, V.: Membrane proteins of the nervous system. Demonstration of different protein profiles in whole brain and its subcellular particles. Naturwissenschaften 59, 232–239 (1972).PubMedCrossRefGoogle Scholar
  93. Wieland, T., Pfleiderer, G., Haupt, J., Wörner, W.: Über die Verschiedenheit der Milchsäuredehydrogenasen: IV. Quantitative Ermittlung einiger Enzymverteilungsmuster. Biochem. Z. 332, 1–10 (1969).Google Scholar
  94. Wilkinson, J.H.: Isoenzymes, 2nd ed. London: Chapman and Hill Ltd. 1970.Google Scholar
  95. Wolfrum, D.I., Rüchel, R., Mesecke, S., Neuhoff, V.: In preparation (1973).Google Scholar
  96. Wrigley, C.W.: Analytical fractionation of plant and animal proteins by gel electrofocusing. J. Chromatog. 36, 362–365 (1968).CrossRefGoogle Scholar
  97. Yoshida, A.: Glucose-6-phosphate dehydrogenase of human erythrocytes. I. Purification and characterization of normal (B) enzyme. J. biol. Chem. 241, 4966–4976 (1966).PubMedGoogle Scholar
  98. Zacharius, R.Ch., Zell, T.E.: Glycoprotein staining following electrophoresis on acrylamide gel. Analyt. Biochem. 30, 148–152 (1969).PubMedCrossRefGoogle Scholar
  99. Zillig, W., Fuchs, E., Milette, R.L.: DNA-dependent RNA polymerase (E.C. In: Cantoni, G.L., and Davies, D. R., Procedure in nucleic acid res., p. 323–339. New York: Harper and Row 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • Volker Neuhoff
    • 1
  1. 1.Medizin (Arbeitsgruppe Neurochemie)Max-Planck-Institut für ExperimentelleGöttingenGermany

Personalised recommendations