Theory of dose-effect relations

  • Albrecht M. Kellerer
  • Otto Hug
Part of the Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 2 / 3)


Quantitive dose-effect relations are equally important in the medical application of ionizing radiation and in radiation protection; moreover they are fundamental for an understanding of the mechanisms of radiation action. The practical and theoretical aspect cannot always be clearly separated. Many of the equations and parameters, for example, which are used for the description of dose-effect relations go back to theoretical models which have been used in the past but have now lost relevancy. Stripped of its original meaning the mathematical formalism has often been retained because it permits a suitable representation of typical dose-effect relations, and because it is convenient in many cases to describe a dose-effect relation by a formula or by a few parameters instead of giving it in tabular form or graphical representation. In the following an attempt will be made to distinguish between formal description of dose-effect relations for practical purposes and the mathematical analysis which aims at an understanding of the mechanisms of radiation action. Attention will mainly be given to the dose dependence of cellular radiation actions but the focus will be on general principles which are equally applicable to other levels of radiation action such as molecular systems or multicellular systems. Techniques and arguments applicable to the analysis of dose-response relations are discussed, and no attempt is made to review the experimental techniques, the modifying factors, such as the oxygen effect, or the radiobiological results. Numerical data are used to elucidate the structure of the essential arguments. They are not representative for the great number of dose-effect relations studied in radiation biology and radiology, and neither their experimental accuracy nor their statistical significance will be considered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alper, T., Fowler, J. F., Morgan, R. L., Vonberg, O. O., Ellis, F., Oliver, R.: The characterization of the “type C” survival curve. Brit. J. Radiol. 35, 722–723 (1962).CrossRefGoogle Scholar
  2. Barendsen, G. W.: Mechanism of Action of Different Ionizing Radiations on the Proliferative Capacity of Mammalian Cells, A. Cole ed., Marcel Dekker (New York). Theoretical and Experimental Biophysics 1, 167–231 (1967).Google Scholar
  3. Bateman, J. L., Bond, V.P.: The effect of Radiations of Different LET on Early Responses in the Mammal. Annals of the New York Academy of Sciences 114 Art. 1, 32–47 (1964).Google Scholar
  4. Bateman, J. L., Bond, V.P., Rossi, H. H., Kellerer, A. M., Robinson, C. V., Bond, V. P.: Dose-Dependence of Fast Neutron RBE for Lens Opacification in Mice, Radiat. Res. 51, 381–390, 1972.PubMedCrossRefGoogle Scholar
  5. Blau, M., Altenburger, K.: Über einige Wirkungen von Strahlen. Z. Physik 12, 315 (1922).CrossRefGoogle Scholar
  6. Bond, V. P., Cronkite, E. P., Lipincott, S. W., Shellabarger, C. J.: Studies on Radiation-Induced Mammary Gland Neoplasia in the Rat, Rad. Res. 12, 276–285 (1960).CrossRefGoogle Scholar
  7. Brustad, T.: Heavy Ions and some Aspects of their Use in Molecular and Cellular Radiobiology. Academic Press (New York). Adv. Biol. Med. Phys. 8, 161 (1962).Google Scholar
  8. Crowther, J. A.: Some Considerations Relative to the Action of X-rays on Tissue Cells. Proc. Royal Society (London) B 96, 207 (1924).CrossRefGoogle Scholar
  9. Dean, C. J., Feldschreiber, P., Lett, J. T.: Repair of X-Ray Damage to the Deoxyribonucleic Acid in Micrococcus Radiodurans, Nature 209, 49–52 (1966).PubMedCrossRefGoogle Scholar
  10. Dertinger, H., Jung, H.: Molekulare Strahlenbiologie. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  11. Dessauer, F.: Über einige Wirkungen von Strahlen, Z. Physik 12, 28 (1922).Google Scholar
  12. Dewey, W. C., Westra, A., Miller, H. H., Nagasawa, N.: Heat-Induced lethality and Chromosomal Damage in Synchronized Chinese Hamster Cells Treated with 5-Bromodeoxyuridine. Int. J. Radiat. Biol. 20, 505–520 (1971).CrossRefGoogle Scholar
  13. Elkind, M., Sutton, H.: X-ray Damage and Recovery in Mammalian Cells in Culture. Nature (London) 184, 1293–1295 (1959).CrossRefGoogle Scholar
  14. Elkind, M., Sutton, H., Whitmore, G.: The Radiobiology of Cultured Mammalian Cells. Gordon and Breach (London) 1967.Google Scholar
  15. Gray, L. H.: Brit. J. Radiol., Suppl. 1, 7 (1947).Google Scholar
  16. Hall, E., Gross, W., Dvorak, R. F., Kellerer, A. M., Rossi, H. H.: Survival Curves and Age Response Functions for Chinese Hamster Cells Exposed to X rays and High LET alpha-Particles, Radiat. Res. 52, 88–98, 1972.PubMedCrossRefGoogle Scholar
  17. Haynes, R. H.: Molecular Localization of Radiation Damage Relevant to Bacterial Inactivation. Physical Processes in Rad. Biol. 51–78 (1964).Google Scholar
  18. Howard-Flanders, P.: Physical and Chemical Mechanisms in the Injury of cells by ionizing radiations. Advan. Biol. Med. Phys. 6, 553–596 (1958).Google Scholar
  19. Hug, O., Kellerer, A.M.: Zur Interpretation der Dosiswirkungsbeziehungen in der Strahlenbiologie. Biophysik 1, 20–32 (1963).CrossRefGoogle Scholar
  20. Hug, O., Kellerer, A.M.: Stochastik der Strahlenwirkung. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  21. Hug, O., Kellerer, A.M., Zuppinger, A.: Der Zeitfaktor. Handbuch d. medizinischen Radiologie, Bd. II/l, Hrsg. Diethelm, L. et al. Berlin-Heidelberg-New York: Springer 1966, p. 271–354.Google Scholar
  22. ICRU: Linear Energy Transfer, Report-16, International Commission on Radiation Units and Measurements (Washington, D. C.) 1970.Google Scholar
  23. ICRU: Radiation Quantities and Units, Report-19, Unternational Commission on Radiation Units and Measurements (Washington, D. C.) 1971.Google Scholar
  24. Kellerer, A.M.: Analysis of Patterns of Energy Deposition. Microdosimetry, Euratom, Brussels 107–135 (1969).Google Scholar
  25. Hug, O.: Zur Kinetik der Strahlenwirkung. Biophysik 1, 33–50 (1963).CrossRefGoogle Scholar
  26. Hug, O., Rossi, H. H.: Summary of Quantities and Functions Employed in Microdosimetry. „Microdosimetry“, 841–853, Euratom, Brussels (1969).Google Scholar
  27. Hug, O., RBE and the Primary Mechanism of Radiation Action. Radiat. Res. 47 15–34 (1971).CrossRefGoogle Scholar
  28. Hug, O.: The Theory of Dual Radiation Action, Current Topics in Radiat. Res., Quarterly 8, 1972.Google Scholar
  29. Lea, D.E.: Actions of Radiations on Living Cells. Cambridge Univ. Press (Cambridge) 1946.Google Scholar
  30. Neary, G. J.: Chromosome Aberrations and the Theory of RBE, 1. General Considerations. Int. J. Rad. Biol. 9, 477–502 (1965).CrossRefGoogle Scholar
  31. Pollard, E. C., Guild, W. R., Hutchinson, F., Setlow, R. B.: Progr. Biophys. Chem. 5, 72 (1955).Google Scholar
  32. Powers, E. L.: Considerations of Survival Curves and Target Theory (Seventh Douglas Lea Memorial Lecture). Phys. in Med. Biol. 7, 1, 3–27 (1962).CrossRefGoogle Scholar
  33. Rossi, H.H.: Correlation of Radiation Quality and Biological Effect. Annals of the New York Academy of Sciences, 114, Art. 1, 4–15 (1964).Google Scholar
  34. Rossi, H.H.: Energy Distribution in the Absorption of Radiation. Adv. in Biol, and Med. Physics 11, 27–85 (1967).Google Scholar
  35. Rossi, H.H.: Microscopic Energy Distribution in Irradiated Matter. Radiation Dosimetry 1, p. 43–92, New York: Acad. Press 1968.Google Scholar
  36. Rossi, H.H.: The Effects of Small Doses of Ionizing Radiation. Phys. In Med. and Biology 15, 255–262 (1970).CrossRefGoogle Scholar
  37. Rossi, H. H., Kellerer, A.M.: Carcinogenesis at Low Doses. Science 175, 200–202 (1972).PubMedCrossRefGoogle Scholar
  38. Shellabarger, C. J.: unpublished data.Google Scholar
  39. Sinclair, W. K.: The Shape of Radiation Survival Curves of Mammalian Cells Cultured in vitro. Panel on the Biophysical Aspects of Radiation Quality IAEA, Vienna, IAEA, Vienna 1968.Google Scholar
  40. Sparrow, A. H., Underbrink, A. G., Rossi, H. H.: Mutations Induced in Tradescantia by Small Doses of X rays and Neutrons: Analysis of Dose-Response Curves. Science 176, 916–918, 1972PubMedCrossRefGoogle Scholar
  41. Timofeeff-Ressovsky, N. M., Zimmer, K. G.: Das Trefferprinzip in der Biologie. Biophysik I, Leipzig: S. Hirzel 1947.Google Scholar
  42. Vogel, H. H.: Mammary Gland Neoplasms after Fission Neutron Irradiation Nature 222, 1279–1281 (1969).Google Scholar
  43. Vogel, H. H., Zaldivar, R.: Experimental Mammary Neoplasms: A comparison of Effectiveness Between Neutrons, X- and Gamma-Radiation, XJSAEC Symposium at Oak Ridge, Tenn. CONF-691106 207–229 (1969).Google Scholar
  44. Wolff, S., Atwood, K. C., Randolph, M. L., Luippold, H. E.: Factors Limiting the Number of Radiation-Induced Chromosome Exchanges. Journal of Biophysical and Biochemical Cytology 4, 365–372 (1958).PubMedCrossRefGoogle Scholar
  45. Zimmer, K. G.: Studies on Quantitative Radiation Biology. London: Oliver and Boyd 1961.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • Albrecht M. Kellerer
  • Otto Hug

There are no affiliations available

Personalised recommendations