Electron Microscopy of Muscle Phosphorylases b and a

  • N. A. Kiselev
  • F. Ya. Lerner
  • N. B. Livanova
Conference paper


Muscle glycogen phosphorylase exists in two enzymatically inter- convertible forms: phosphorylase a and phosphorylase b. It has been shown that phosphorylase a in solution is a tetramer of molecular weight 400000 (s=13,2S), and phosphorylase b is a dimer of molecular weight 200000 (1). In the presence of p-chlormercuribenzoate (2) phosphorylases a and b dissociate into four and two monomers, respectively, both having the same molecular weight. On conversion of phosphorylase b into a, in the presence of ATP, Mg2+ and phosphorylase b kinase, one phosphate group appears to be bonded to the serine residue per monomer of the enzyme (3). If phosphorylase a is fully active in the native state without 5′-AMP, phosphorylase b, the non-phosphorylated form of the enzyme, is active only in the presence of 5′AMP or IMP with protamin (4,5). The ultracentrifuge studies have shown that the dimeric form of phosphorylase b is converted into the tetrameric form (s=13,2S) in the presence of a mixture of 0,001M-AMP+0,03M cysteine+0,01M Mg2+ (6) or 0,001M 5′-IMP+ 0,0001M protamin or protamin only (7).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen Ph., Duewer Th., Fischer E.H. Biochemistry, 10, 2683 (1971).CrossRefGoogle Scholar
  2. 2.
    Madsen N.B. & Cori C.F. J.Biol.Chem., 223, 1055 (1956).Google Scholar
  3. 3.
    Nolan C., Novoa W.B. & Fischer E.H. Biochemistry, 542 (1964).Google Scholar
  4. 4.
    Cori G.T., Colowick S.P. & Cori C.F. J.Biol.Chem., 123, 381 (1938)Google Scholar
  5. 5.
    Krebs E.G. Biochim Biophys. Acta, 15. 508 (1954).CrossRefGoogle Scholar
  6. 6.
    Fischer E.H. & Krebs E.G. J. Biol. Chem., 231, 65 (1958).Google Scholar
  7. 7.
    Silonova G.V., Lissovskaya N.P. & Pikhelgas V. Ya. Doklady Akademii Nauk SSSR, 169, 483 (1966)Google Scholar
  8. 8.
    Madsen N.B. & Cori C.F. Biochim. et Biophys.Acta, 15,516 (1954).CrossRefGoogle Scholar
  9. 9.
    Lissovskaya N.P., Livanova N.B. & Silonova G.V. Biochimiya, 22, 1012 (1964).Google Scholar
  10. 10.
    Krebs E.G., Kent A.B. & Fischer E.H. J.Biol.Chem., 231,73 (1958)Google Scholar
  11. 11.
    Kosourov G.I., Livshits I.E. & Kiselev N.A. Kristallografiya, 16, 813 (1971).Google Scholar
  12. 12.
    Kiselev N.A., Lerner F. Ya. & Livanova N.B. Molekulyarnaya Biologiya, 5.642 (1971) (Mol.Biol. in Russian).Google Scholar
  13. 13.
    Klug A. & De Rosier D.J. Nature. 212, 29 (1966).CrossRefGoogle Scholar
  14. 14.
    Watson I.D. Biochira. et Biophys. Acta, 13, 10 (1954).CrossRefGoogle Scholar
  15. 15.
    Vainshtein B.K. Diffraction of X-Rays by Chain Molecules, Amsterdam: Elsevier. 1966.Google Scholar
  16. 16.
    Mikhailov A.M. Kristallografiya, 15. 818 (1970).Google Scholar
  17. 17.
    Pranklin R.E. & Klug A. Biochim. et Biophys.Acta, 19,403 (1956).CrossRefGoogle Scholar
  18. 18.
    Chignell D.A., Gratzer W.B. & Valentine R.C. Biochemistry, 2, 1082 (1968).CrossRefGoogle Scholar
  19. 19.
    Klug A. In “Symmetry and Function of Biol. System at the Macromolecular Level”. Ed.: A.Engström a. B.Strandberg Almqvist & Wiksell, Stockholm. 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • N. A. Kiselev
    • 1
  • F. Ya. Lerner
    • 1
  • N. B. Livanova
    • 2
  1. 1.Institute of Crystallography of the Academy of Sciences of the USSRMoscowUSSR
  2. 2.Bach Institute of Biochemistry of the Academy of Sciences of the USSRMoscowUSSR

Personalised recommendations