Advertisement

Algebra pp 325-365 | Cite as

General Wedderburn Theorems

  • Carl Faith
Chapter
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 190)

Abstract

The study of endomorphism rings is important both in the study of modules and in the study of abstract rings. It is important in the study of modules because many properties of a module are characterizable by properties of its endomorphism ring. Indeed, some modules over certain rings are determined by their endomorphism rings, which is a way of saying that the modules are isomorphic if and only if their endomorphism rings are isomorphic qua rings. This is true for vector spaces. It is important for the study of rings, since some rings, even those abstractly defined, can be embedded in a ring of endomorphisms of a relatively “nice” module, for example, a vector space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [27]
    Gorenstein, D.: Finite Groups. New York: Harper & Row 1968.zbMATHGoogle Scholar
  2. [43]
    Artin, E., Whaples, G.: The theory of simple rings. Amer. J. Math. 65, 87–107 (1943).CrossRefzbMATHMathSciNetGoogle Scholar
  3. [44]
    Artin, E., Nesbitt, E., Thrall, R.: Rings with Minimum Condition. Ann Arbor: University of Michigan Press 1944.zbMATHGoogle Scholar
  4. [60]
    Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc. 95, 466–488 (1960).CrossRefzbMATHMathSciNetGoogle Scholar
  5. [62]
    Cohn, P. M.: On subsemigroups of free semigroups. Proc. Amer. Math. Soc. 13, 347–351 (1962).CrossRefzbMATHMathSciNetGoogle Scholar
  6. [68]
    Gorenstein, D.: Finite Groups. New York: Harper & Row 1968.zbMATHGoogle Scholar
  7. [71]
    Lambek, J.: Torsion Theories, Additive Semantics, and Rings of Quotients. Lecture Notes in Mathematics, No. 177. Berlin/Heidelberg/New York: Springer 1971. Lambek, J., Findlay, G. D. (see Findlay and Lambek).Google Scholar
  8. [70]
    Osofsky, B. L.: Homological dimension and cardinality. Trans. Amer. Math. Soc. 151, 641–649 (1970).CrossRefzbMATHMathSciNetGoogle Scholar
  9. [72]
    Rao, M. L. R.: Azumaya, semisimple, and ideal algebras. Bull. Amer. Math. Soc. 78, 588–592 (1972). Reiner, I., Curtis, C. W. (see Curtis and Reiner).Google Scholar
  10. [62]
    Cohn, P. M.: On subsemigroups of free semigroups. Proc. Amer. Math. Soc. 13, 347–351 (1962).CrossRefzbMATHMathSciNetGoogle Scholar
  11. [66a]
    Cohn, P. M.: Morita Equivalence and Duality. University of London, Bookstore, Queen Mary College, Mile End Road, London 1966.Google Scholar
  12. [70]
    Cozzens, J. H.: Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc. 76, 75-79 (1970).CrossRefzbMATHMathSciNetGoogle Scholar
  13. [72]
    Cozzens, J. H.: Simple principal left ideal domains. J. Alg. 23, 66–75 (1972).CrossRefzbMATHMathSciNetGoogle Scholar
  14. [64]
    Faith, C.: Noetherian simple rings. Bull. Amer. Math. Soc. 70, 730— 731 (1964).Google Scholar
  15. [67a]
    Faith, C.: Lectures on Injective Modules and Quotient Rings. Lecture Notes in Mathematics, No. 49. Berlin/Heidelberg/New York: Springer 1967.Google Scholar
  16. [67b]
    b] Faith, C.: A general Wedderburn theorem. Bull. Amer. Math. Soc. 73, 65–67 (1967).CrossRefzbMATHMathSciNetGoogle Scholar
  17. [71a]
    a] Faith, C.: A correspondence theorem for projective modules and the structure of simple noetherian rings. Bull. Amer. Math. Soc. 77, 338–342 (1971).CrossRefzbMATHMathSciNetGoogle Scholar
  18. [72a]
    Faith, C.: Orders in semilocal rings. Bull. Amer. Math. Soc. 77, 960–962 (1971).CrossRefzbMATHMathSciNetGoogle Scholar
  19. [65b]
    Faith, C., Utumi, Y.: Maximal quotient rings. Proc. Amer. Math. Soc. 16, 1084-1089 (1965).Google Scholar
  20. [58]
    Findlay, G. D., Lambek, J.: A generalized ring of quotients, I, II. Canad. Math. Bull. 1, 77-85, 155–167 (1958).Google Scholar
  21. [71]
    Fuller, K. R.: Primary rings and double centralizers. Pac. J. Math. 34, 379-383 (1970). Fuller, K. R., Camillo, V. (see Camillo and Fuller).Fuller, K. R., Dickson, S. E. (see Dickson and Fuller).Google Scholar
  22. [62]
    Gabriel, P.: Des catégories abeliennes. Bull. Soc. Math. France 90, 323–448 (1962).zbMATHMathSciNetGoogle Scholar
  23. [42]
    Jacobson, N.: The theory of rings. Surveys, Vol. 2. Amer. Math. Soc., Providence 1942.Google Scholar
  24. [45]
    Levitzki, J.: Solution of a problem of G. Koethe. Amer. J. Math. 67, 437–442 (1945).CrossRefzbMATHMathSciNetGoogle Scholar
  25. [70]
    Osofsky, B. L.: Homological dimension and cardinality. Trans. Amer. Math. Soc. 151, 641–649 (1970).CrossRefzbMATHMathSciNetGoogle Scholar
  26. [58]
    Seshadri, C.: Trivality of vector bundles over the affine space K2. Proc. Nat. Acad. Sci. USA 44 456–458 (1958).CrossRefzbMATHMathSciNetGoogle Scholar
  27. [64]
    Bergman, G. M.: A ring primitive on the right but not the left. Proc. Amer. Math. Soc. 15, 473–475 (1964).CrossRefzbMATHMathSciNetGoogle Scholar
  28. [52]
    Birkhoff, G.: Lattice Theory, Colloquium Publication, Vol. 25 (revised). Amer. Math. Soc., Providence 1967.Google Scholar
  29. [56]
    Cartan, H., Eilenberg, S.: Homological Algebra. Princeton: Princeton University Press 1956.zbMATHGoogle Scholar
  30. [08]
    Wedderburn, J. H. M.: On hypercomplex numbers. Proc. Lond. Math. Soc. (2) 6, 77–117 (1908).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Carl Faith
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations