Advertisement

Algebra pp 230-300 | Cite as

Limits, Adjoints, and Algebras

  • Carl Faith
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 190)

Abstract

A list of topics in Chapter 5 would include bifunctors, representable functors, left and right adjoint functors, adjunction bijections and morphisms, adjoint pairs, forgetful functor, and free object functor, limits, compatible families of morphisms, directed class, direct and inverse limits, kernels, cokernels, equalizers, intersections, fiber products, or push-outs, images, inverse images, epic images, complete categories, normal objects and categories, balanced categories, locally small, exact categories, diagram chasing, the Noether isomorphism theorems for exact categories, limit preserving functors, right continuous functors, Freyd’s theorems, module valued adjoints, the tensor functor, flat modules, character modules, adjoints of faithful functors, PopescoGabriel theorem (second version), algebras over commutative rings, semigroup rings, and group rings, free algebras, commutative and noncommutative rings of polynomials.

Keywords

Exact Sequence Natural Transformation Group Ring Free Algebra Final Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [64a]
    Cohn, P. M.: Free ideal rings. J. Algebra 1, 47–69 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  2. [64b]
    Cohn, P. M.: Subalgebras of free associative algebras. Proc. Lond. Math. Soc. (3) 14, 618–632 (1964).CrossRefzbMATHGoogle Scholar
  3. [60]
    Eilenberg, S.: Abstract description of some basic functors. J. Indian Math. Soc. 24, 221–234 (1960).MathSciNetGoogle Scholar
  4. [62]
    Freyd, P.: Abelian Categories. New York: Harper Row 1964.Google Scholar
  5. [62]
    Gabriel, P.: Des catégories abeliennes. Bull. Soc. Math. France 90, 323–448 (1962).zbMATHMathSciNetGoogle Scholar
  6. [67]
    Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory. New York/Heidelberg/Berlin: Springer 1967.Google Scholar
  7. [57]
    Grothendieck, A.: Sur quelquespoints d’algèbre homologique. Tohoku. Nagoya Math. J. 9, 119–221 (1957).zbMATHMathSciNetGoogle Scholar
  8. [58]
    Hochschild, G.: Note on relative homological algebra. Nagoya Math. J. 13, 89–94 (1958).zbMATHMathSciNetGoogle Scholar
  9. [69]
    Jategaonkar, A. V.: Ore domains and free algebras. Bull. Lond. Math. Soc. 1, 45–46 (1969).zbMATHMathSciNetGoogle Scholar
  10. [58]
    Kan, D.: Adjoint functors. Trans. Amer. Math. Soc. 87, 294–329 (1958).CrossRefzbMATHMathSciNetGoogle Scholar
  11. [64a]
    Lambek, J.: A module is flat if and only if its character module is injective. Canad. Math. Bull. 7, 237–243 (1964).CrossRefzbMATHMathSciNetGoogle Scholar
  12. [63]
    MacLane, S.: Homology. Berlin/Göttingen/Heidelberg: Springer 1963.zbMATHGoogle Scholar
  13. [65]
    Mitchell, B.: Theory of Categories. New York: Academic Press 1965.zbMATHGoogle Scholar
  14. [58]
    Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Reports, Tokyo Kyoiku Daigaku 6, 83–142 (1958).zbMATHGoogle Scholar
  15. [64]
    Popesco, N., Gabriel, P.: Caractérisations des catégories abelienncs avec générateurs et limites inductives exactes. C. R. Acad. Sci. Paris 258, 4188–4190 (1964). Preston, G. B., Clifford, A. H. (see Clifford and Preston).Google Scholar
  16. [60]
    Watts, C.: Intrinsic characterizations of some additive functors. Proc. Amer. Math. Soc. 11, 5–8 (1960).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Carl Faith
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations