Algebra pp 185-229

# Correspondence Theorems for Projective Modules and the Structure of Simple Noetherian Rings

• Carl Faith
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 190)

## Abstract

Much of Chapter 4 is devoted to the exposition of the structure theory of simple right Noetherian rings. The basic tools generalize the theorems of Morita [58] characterizing similarity of two rings A and B, that is, when there is an equivalence mod-A ≈ mod-B of categories. Morita’s characterization 4.29 predicates the existence of a finitely generated projective module P which is a generator of the category mod-B such that A is isomorphic to End B P. In the Morita situation 4.30 there is a lattice isomorphism
$$\left\{ {\begin{array}{*{20}{c}} {right A - submodules of \to right ideals of B} \\ {IP \leftrightarrow I} \end{array}} \right.$$
sending (B, A)-submodules onto ideals of B. More generally, 4.7, if U is any finitely generated projective faithful left B-module over any ring B, and A = End B U then there is a lattice isomorphism
$$\left\{ {\begin{array}{*{20}{c}}{right A - submodules of U \to (right ideas of V) T} \\ {IU \leftrightarrow I = IT} \end{array}} \right.$$
where T is the trace of U in B (Correspondence Theorem for Projective Modules.) This isomorphism sends (B, A)-submodules of U into (ideals of B) T. Thus, when T = B (and only then) the two theorems coincide.

### Keywords

Hull Dition Prefix Kato Suffix

## Preview

### References

1. [72]
Amitsur, S. A.: On central division algebras. Israel J. Math. 12, 408–420 (1972).
2. [43]
Artin, E., Whaples, G.: The theory of simple rings. Amer. J. Math. 65, 87–107 (1943).
3. [44]
Artin, E., Nesbitt, E., Thrall, R.: Rings with Minimum Condition. Ann Arbor: University of Michigan Press 1944.
4. [60b]
Auslander, M., Goldman, O.: The Brauer group of a commutative ring. Trans. Amer. Math. Soc. 97, 367–409 (1960).
5. [62a]
Bass, H.: The Morita Theorems. (Lecture Notes.) Department of Mathematics, University of Oregon, Eugene 1962.Google Scholar
6. [68]
Bass, H.: Algebraic K-Theory. New York: Benjamin 1968.Google Scholar
7. [64]
Bergman, G. M.: A ring primitive on the right but not the left. Proc. Amer. Math. Soc. 15, 473–475 (1964).
8. [70]
Camillo, V. P.: Balanced rings and a problem of Thrall. Trans. Amer. Math. Soc. 149, 143–153 (1970).
9. [72]
Camillo, V., Fuller, K. R.: Balanced and QF — 1 algebras. Proc. Amer. Math. Soc. 23, 373-378 (1972).
10. [66a]
Cohn, P. M.: Morita Equivalence and Duality. University of London, Bookstore, Queen Mary College, Mile End Road, London 1966.Google Scholar
11. [70]
Cozzens, J. H.: Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc. 76, 75–79 (1970).
12. [72]
Dlab, V., Ringel, C. M.: Balanced rings. J. Algebra 22, 480— 501 (1972).Google Scholar
13. [64]
Faith, C.: Noetherian simple rings. Bull. Amer. Math. Soc. 70, 730— 731 (1964).Google Scholar
14. [67a]
Faith, C.: Lectures on Injective Modules and Quotient Rings. Lecture Notes in Mathematics, No. 49. Berlin/Heidelberg/New York: Springer 1967.Google Scholar
15. [67b]
b] Faith, C.: A general Wedderburn theorem. Bull. Amer. Math. Soc. 73, 65–67 (1967).
16. [71a]
a] Faith, C.: A correspondence theorem for projective modules and the structure of simple noetherian rings. Bull. Amer. Math. Soc. 77, 338–342 (1971).
17. [71a]
Faith, C.: A correspondence theorem for projective modules and the structure of simple noetherian rings. Bull. Amer. Math. Soc. 77, 338–342 (1971).
18. [72a]
Faith, C.: A correspondence theorem for projective modules, and the structure of simple Noetherian rings. Proceedings of the Conference on Associative Algebras, Nov. 1970. Istituto Nazionale di Alta Matematica, Symposium Matematica 8, 309–345 (1972).
19. [65b]
Faith, C., Utumi, Y.: Maximal quotient rings. Proc. Amer. Math. Soc. 16, 1084-1089 (1965).Google Scholar
20. [58]
Findlay, G. D., Lambek, J.: A generalized ring of quotients, I, II. Canad. Math. Bull. 1, 77-85, 155–167 (1958).Google Scholar
21. [62]
Gabriel, P.: Des catégories abeliennes. Bull. Soc. Math. France 90, 323–448 (1962).
22. [58]
Goldie, A. W.: The structure of prime rings under ascending chain conditions. Proc. Lond. Math. Soc. VIII, 589–608 (1958).Google Scholar
23. [60]
Goldie, A. W.: Semi-prime rings with maximum condition. Proc. Lond. Math. Soc. X, 201–220 (1960).Google Scholar
24. [67]
Hart, R.: Simple rings with uniform right ideals. J. Lond. Math. 42, 614–617 (1967).
25. [42]
Jacobson, N.: The theory of rings. Surveys, Vol. 2. Amer. Math. Soc., Providence 1942.Google Scholar
26. [70]
Jans, J. P.: On the double centralizer property. Math. Ann. 188, 85–89 (1970).
27. [51a]
Johnson, R. E.: The extended centralizer of a ring over a module. Proc. Amer. Math. Soc. 2, 891–895 (1951).
28. [51b]
Johnson, R. E.: Prime rings. Duke Math. J. 18, 799–809 (1951).
29. [58]
Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Reports, Tokyo Kyoiku Daigaku 6, 83–142 (1958).
30. [52]
Shepherdson, J. C.: Inverse and zero divisors in matrix rings. Proc. Lond. Math. Soc. 61 71–85 (1951).
31. [56]
Utumi, Y.: On quotient rings. Osaka Math. J. 8, 1–18 (1956).Google Scholar
32. [08a]
Zermelo, E.: Neuer Beweis für die Möglichkeit einer Wohlordnung. Math. Ann. 65, 107–128 (1908).
33. [08b]
Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre I. Math. Ann. 65, 261–281 (1908). Zisman, M., Gabriel, P. (see Gabriel and Zisman).Google Scholar