Algebra pp 185-229 | Cite as

Correspondence Theorems for Projective Modules and the Structure of Simple Noetherian Rings

  • Carl Faith
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 190)


Much of Chapter 4 is devoted to the exposition of the structure theory of simple right Noetherian rings. The basic tools generalize the theorems of Morita [58] characterizing similarity of two rings A and B, that is, when there is an equivalence mod-A ≈ mod-B of categories. Morita’s characterization 4.29 predicates the existence of a finitely generated projective module P which is a generator of the category mod-B such that A is isomorphic to End B P. In the Morita situation 4.30 there is a lattice isomorphism
$$\left\{ {\begin{array}{*{20}{c}} {right A - submodules of \to right ideals of B} \\ {IP \leftrightarrow I} \end{array}} \right.$$
sending (B, A)-submodules onto ideals of B. More generally, 4.7, if U is any finitely generated projective faithful left B-module over any ring B, and A = End B U then there is a lattice isomorphism
$$\left\{ {\begin{array}{*{20}{c}}{right A - submodules of U \to (right ideas of V) T} \\ {IU \leftrightarrow I = IT} \end{array}} \right.$$
where T is the trace of U in B (Correspondence Theorem for Projective Modules.) This isomorphism sends (B, A)-submodules of U into (ideals of B) T. Thus, when T = B (and only then) the two theorems coincide.


Left Ideal Projective Module Regular Element Endomorphism Ring Quotient Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [72]
    Amitsur, S. A.: On central division algebras. Israel J. Math. 12, 408–420 (1972).zbMATHMathSciNetGoogle Scholar
  2. [43]
    Artin, E., Whaples, G.: The theory of simple rings. Amer. J. Math. 65, 87–107 (1943).CrossRefzbMATHMathSciNetGoogle Scholar
  3. [44]
    Artin, E., Nesbitt, E., Thrall, R.: Rings with Minimum Condition. Ann Arbor: University of Michigan Press 1944.zbMATHGoogle Scholar
  4. [60b]
    Auslander, M., Goldman, O.: The Brauer group of a commutative ring. Trans. Amer. Math. Soc. 97, 367–409 (1960).CrossRefMathSciNetGoogle Scholar
  5. [62a]
    Bass, H.: The Morita Theorems. (Lecture Notes.) Department of Mathematics, University of Oregon, Eugene 1962.Google Scholar
  6. [68]
    Bass, H.: Algebraic K-Theory. New York: Benjamin 1968.Google Scholar
  7. [64]
    Bergman, G. M.: A ring primitive on the right but not the left. Proc. Amer. Math. Soc. 15, 473–475 (1964).CrossRefzbMATHMathSciNetGoogle Scholar
  8. [70]
    Camillo, V. P.: Balanced rings and a problem of Thrall. Trans. Amer. Math. Soc. 149, 143–153 (1970).CrossRefzbMATHMathSciNetGoogle Scholar
  9. [72]
    Camillo, V., Fuller, K. R.: Balanced and QF — 1 algebras. Proc. Amer. Math. Soc. 23, 373-378 (1972).MathSciNetGoogle Scholar
  10. [66a]
    Cohn, P. M.: Morita Equivalence and Duality. University of London, Bookstore, Queen Mary College, Mile End Road, London 1966.Google Scholar
  11. [70]
    Cozzens, J. H.: Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc. 76, 75–79 (1970).CrossRefzbMATHMathSciNetGoogle Scholar
  12. [72]
    Dlab, V., Ringel, C. M.: Balanced rings. J. Algebra 22, 480— 501 (1972).Google Scholar
  13. [64]
    Faith, C.: Noetherian simple rings. Bull. Amer. Math. Soc. 70, 730— 731 (1964).Google Scholar
  14. [67a]
    Faith, C.: Lectures on Injective Modules and Quotient Rings. Lecture Notes in Mathematics, No. 49. Berlin/Heidelberg/New York: Springer 1967.Google Scholar
  15. [67b]
    b] Faith, C.: A general Wedderburn theorem. Bull. Amer. Math. Soc. 73, 65–67 (1967).CrossRefzbMATHMathSciNetGoogle Scholar
  16. [71a]
    a] Faith, C.: A correspondence theorem for projective modules and the structure of simple noetherian rings. Bull. Amer. Math. Soc. 77, 338–342 (1971).CrossRefzbMATHMathSciNetGoogle Scholar
  17. [71a]
    Faith, C.: A correspondence theorem for projective modules and the structure of simple noetherian rings. Bull. Amer. Math. Soc. 77, 338–342 (1971).CrossRefzbMATHMathSciNetGoogle Scholar
  18. [72a]
    Faith, C.: A correspondence theorem for projective modules, and the structure of simple Noetherian rings. Proceedings of the Conference on Associative Algebras, Nov. 1970. Istituto Nazionale di Alta Matematica, Symposium Matematica 8, 309–345 (1972).MathSciNetGoogle Scholar
  19. [65b]
    Faith, C., Utumi, Y.: Maximal quotient rings. Proc. Amer. Math. Soc. 16, 1084-1089 (1965).Google Scholar
  20. [58]
    Findlay, G. D., Lambek, J.: A generalized ring of quotients, I, II. Canad. Math. Bull. 1, 77-85, 155–167 (1958).Google Scholar
  21. [62]
    Gabriel, P.: Des catégories abeliennes. Bull. Soc. Math. France 90, 323–448 (1962).zbMATHMathSciNetGoogle Scholar
  22. [58]
    Goldie, A. W.: The structure of prime rings under ascending chain conditions. Proc. Lond. Math. Soc. VIII, 589–608 (1958).Google Scholar
  23. [60]
    Goldie, A. W.: Semi-prime rings with maximum condition. Proc. Lond. Math. Soc. X, 201–220 (1960).Google Scholar
  24. [67]
    Hart, R.: Simple rings with uniform right ideals. J. Lond. Math. 42, 614–617 (1967).CrossRefzbMATHGoogle Scholar
  25. [42]
    Jacobson, N.: The theory of rings. Surveys, Vol. 2. Amer. Math. Soc., Providence 1942.Google Scholar
  26. [70]
    Jans, J. P.: On the double centralizer property. Math. Ann. 188, 85–89 (1970).CrossRefMathSciNetGoogle Scholar
  27. [51a]
    Johnson, R. E.: The extended centralizer of a ring over a module. Proc. Amer. Math. Soc. 2, 891–895 (1951).zbMATHGoogle Scholar
  28. [51b]
    Johnson, R. E.: Prime rings. Duke Math. J. 18, 799–809 (1951).zbMATHGoogle Scholar
  29. [58]
    Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Reports, Tokyo Kyoiku Daigaku 6, 83–142 (1958).zbMATHGoogle Scholar
  30. [52]
    Shepherdson, J. C.: Inverse and zero divisors in matrix rings. Proc. Lond. Math. Soc. 61 71–85 (1951).CrossRefMathSciNetGoogle Scholar
  31. [56]
    Utumi, Y.: On quotient rings. Osaka Math. J. 8, 1–18 (1956).Google Scholar
  32. [08a]
    Zermelo, E.: Neuer Beweis für die Möglichkeit einer Wohlordnung. Math. Ann. 65, 107–128 (1908).CrossRefzbMATHGoogle Scholar
  33. [08b]
    Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre I. Math. Ann. 65, 261–281 (1908). Zisman, M., Gabriel, P. (see Gabriel and Zisman).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Carl Faith
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations