Algebra pp 43-82 | Cite as

Operations: Monoid, Semigroup, Group, and Category

  • Carl Faith
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 190)


In addition to the topics in the title, this chapter presents the operations of direct product and sum, quotient group, the Noether homomorphism theorems, the Zassenhaus butterfly lemma, and exercises on permutation and alternating groups, solvable and nilpotent groups, simple groups, the Sylow theorems, and the basic theorems for abelian groups.


Abelian Group Normal Subgroup Identity Element Natural Transformation Quotient Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. Artin, E.: Galois Theory. South Bend: Notre Dame University 1955.Google Scholar
  2. Artin, E.: Geometric Algebra. New York: Interscience Publishers 1957.zbMATHGoogle Scholar
  3. Artin, E. Nesbitt, E., Thrall, R.: Rings with Minimum Condition. Ann Arbor: University of Michigan Press 1944.zbMATHGoogle Scholar
  4. Bass, H.: Algebraic K-Theory. New York: Benjamin 1968.Google Scholar
  5. Birkhoff, G.: Lattice Theory, Colloquium Publication, Vol. 25 (revised). Amer. Math. Soc., Providence 1948, 1967.Google Scholar
  6. Bucur, I., Deleanu, A.: Introduction to the Theory of Categories and Functors. London/New York/Sidney: Interscience Publishers, Wiley 1968.Google Scholar
  7. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton: Princeton University Press 1956.Google Scholar
  8. Chevalley, C.: Fundamental Concepts of Algebra. New York: Academic Press 1956. Clifford, A. H., Preston, G. B.: Algebraic Theory of Semigroups. Vol. 1. Surveys Amer. Math. Soc., No. 7, Providence 1961.Google Scholar
  9. Cohn, P. M., Morita Equivalence and Duality. University of London, Bookstore, Queen Mary College, Mile End Road, London, 1966.Google Scholar
  10. Feit, W.: Characters of Finite Groups. New York: Benjamin 1967.Google Scholar
  11. Freyd, P.: Abelian Categories. New York: Harper & Row 1964.zbMATHGoogle Scholar
  12. Fuchs, L.: Abelian Groups, 2nd Ed. New York: Pergamon Press 1970. Gorenstein, D.: Finite Groups. New York: Harper & Row 1968.Google Scholar
  13. Hall, M. H., Jr.: The Theory of Groups. New York: Macmillan 1959.zbMATHGoogle Scholar
  14. Herstein, I. N.: Topics in Algebra. New York: Harper & Row 1964.zbMATHGoogle Scholar
  15. Jacobson, N.: Lectures in Abstract Algebra, Vols. I — III. New York/Princeton: Van Nostrand 1951, 1953, 1964.Google Scholar
  16. Jans, J.: Rings and Homology. New York: Holt, Rinehart & Winston 1964. Kaplansky, I.: Infinite Abelian Groups, 2nd Ed. Ann Arbor: University of Michigan Press 1969.Google Scholar
  17. Kurosch, A.: Theory of Groups, Vols. 1 and 2. New York: Chelsea 1955, 1956.Google Scholar
  18. Kurosch, A. General Algebra. New York: Chelsea 1963.Google Scholar
  19. Lang, S.: Algebra. Cambridge: Addison-Wesley 1965.zbMATHGoogle Scholar
  20. MacLane, S.: Homology. Berlin/Göttingen/Heidelberg: Springer 1963.zbMATHGoogle Scholar
  21. MacLane, S. Categories for the Working Mathematician, Berlin/Heidelberg/New York: Springer 1971.Google Scholar
  22. MacLane, S., Birkhoff, G.: Algebra. New York/London: MacMillan 1967.zbMATHGoogle Scholar
  23. Mitchell, B.: Theory of Categories. New York: Academic Press 1965.zbMATHGoogle Scholar
  24. Northcott, D. G.: Homological Algebra, Cambridge: Cambridge University Press 1960.zbMATHGoogle Scholar
  25. Pontry-agin, L.: Topological Groups. Princeton: Princeton University Press 1939. Rotman, J.: Theory of Groups. Boston: Allyn Bacon 1965.Google Scholar
  26. Waerden, B. L. van der: Modern Algebra, Vols. 1 and 2. New York: Ungar 1948. Weyl, H.: The Classical Groups, their Invariants and Representations (revised). Princeton: Princeton University Press 1946.Google Scholar
  27. Wielandt, H.: Finite Permutation Groups. New York: Academic Press 1964. Zassenhaus, H.: The Theory of Groups, 2nd Ed. New York: Chelsea 1958.Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Carl Faith
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations