Algebra pp 460-483 | Cite as

Algebras over Fields

  • Carl Faith
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 190)


This chapter is a brief introduction into the structure of algebras, mostly finite dimensional, over any field k. The main contents are the Wedderburn theorems for a finite dimensional algebras A over an algebraically closed field k. If A has no nilpotent ideals ≠ 0, then A is a finite product of total matrix algebras over k. In this case, the set d (A) of degrees of the total matrix algebras is a complete set of invariants of A. Thus, 13.7 two finite dimensional semiprime algebras A and B over k are isomorphic if and only if d (A) = d (B).


Finite Group Commutative Ring Division Algebra Nilpotent Element Artinian Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [56]
    Cartan, H., Eilenberg, S.: Homological Algebra. Princeton: Princeton University Press 1956.zbMATHGoogle Scholar
  2. [72]
    Chatters, A. W.: A decomposition theorem for Noetherian hereditary rings. Bull. London Math. Soc. (to appear).Google Scholar
  3. [73]
    Chevalley, C.: The Construction and Study of Certain Important Algebras. The Mathematical Society of Japan, Tokyo 1955.Google Scholar
  4. [58]
    Fraenkel, A. A., Bar-Hillel, Y.: Foundations of Set Theory. Amsterdam: North Holland Publishing Comp. 1958.Google Scholar
  5. [60a]
    Auslander, M., Goldman, O Maximal orders. Trans. Amer. Math. Soc. 97, 1–24 (1960).CrossRefzbMATHMathSciNetGoogle Scholar
  6. [51]
    Azumaya, G.: On maximally central algebras. Nagoya Math. J. 2, 119–150 (1951).zbMATHMathSciNetGoogle Scholar
  7. [63]
    Bourbaki, N.: Eléments de Mathématique. Théorie des Ensembles, Chap. 3. (A.S.I. No. 1243) Paris: Hermann 1963.Google Scholar
  8. [63]
    Feit, W., Thompson, J. G.: Solvability of groups of odd order. Pac. J. Math. 13, 775–1029 (1963).zbMATHMathSciNetGoogle Scholar
  9. [62]
    Gabriel, P.: Des catégories abeliennes. Bull. Soc. Math. France 90, 323–448 (1962).zbMATHMathSciNetGoogle Scholar
  10. [48]
    Krull, W.: Idealtheorie. New York: Chelsea 1948. Kuppisch, H., Kasch, F., Kneser, M. (see Kasch, Kneser, and Kuppisch).Google Scholar
  11. [23]
    Dickson, L. E.: Algebras and their Arithmetics. University of Chicago, 1923, and Stechert & Co. (reprint) 1938.Google Scholar
  12. [72a]
    Faith, C.: A correspondence theorem for projective modules, and the structure of simple Noetherian rings. Proceedings of the Conference on Associative Algebras, Nov. 1970. Istituto Nazionale di Alta Matematica, Symposium Matematica 8, 309–345 (1972).MathSciNetGoogle Scholar
  13. [72b]
    Faith, C.: Modules finite over endomorphism ring. Proc. Tulane University, Symposium in Ring Theory, New Orleans. Lecture Notes in Mathematics, No. 246. Berlin/Heidelberg/New York: Springer, pp. 145–190.Google Scholar
  14. [72c]
    Faith, C.: Galois subrings of Ore domains are Ore domains Bull. Amer. Math. Soc. 78, 1077-1080 (1972).CrossRefzbMATHMathSciNetGoogle Scholar
  15. [72]
    Formanek, E., Snider, R. L.: Primitive group rings. Carleton University and Miami University, preprint, Ottawa and Coral Gables 1972.Google Scholar
  16. [65]
    Grothendieck, A.: Le groupe dc Brauer I. Séminaire Bourbaki, exposé 290, Paris: Hermann 1965.Google Scholar
  17. [56]
    Harada, M.: Note on the dimension of modules and algebras. 3. Inst. Polytechnics Osaka City University, Ser. A7, 17–27 (1956).MathSciNetGoogle Scholar
  18. [58]
    Hochschild, G.: Note on relative homological algebra. Nagoya Math. J. 13, 89-94 (1958).zbMATHMathSciNetGoogle Scholar
  19. [42]
    Jacobson, N.: The theory of rings. Surveys, Vol. 2. Amer. Math. Soc., Providence 1942.Google Scholar
  20. [64]
    Jans, J. P.: Rings and Homology. New York: Holt 1964.Google Scholar
  21. [69]
    Johnson, R. E.: Extended Malcev domains. Proc. Amer. Math. Soc. 21, 211–213 (1969).CrossRefzbMATHMathSciNetGoogle Scholar
  22. [72]
    Knus, M. A., Ojanguren, M.: On the torsion of the Brauer group. Preprint, Math. Inst. E.T.H., Zürich 1972.Google Scholar
  23. [98]
    Maschke, H.: Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen. Math. Ann. 50, 483–498 (1898).Google Scholar
  24. [72]
    Knus, M. A., Ojanguren, M.: On the torsion of the Brauer group. Preprint, Math. Inst. E.T.H., Zürich 1972.Google Scholar
  25. [68]
    Gorenstein, D.: Finite Groups. New York: Harper & Row 1968.zbMATHGoogle Scholar
  26. [8]
    Wedderburn, J. H. M.: On hypercomplex numbers. Proc. Lond. Math. Soc. (2) 6, 77–117 (1908).CrossRefzbMATHGoogle Scholar
  27. [37]
    Wedderburn, J. H. M.: A note on algebras. Ann. Math. 38, 854–856 (1937).CrossRefMathSciNetGoogle Scholar
  28. [71]
    Woods, S. M.: On perfect group rings. Proc. Amer. Math. Soc. 27, 49 52 (1971). [300 B.C.] Xerxes, C.: The Athenian plateau problem. Archiv. Manuskriptus 1, 1–100 (300 B.C.).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Carl Faith
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations