Ganzzahlige Programmierung — Ein Überblick

  • Bernhard Korte
Conference paper
Part of the Lecture Notes in Operations Research and Mathematical Systems book series (LNE, volume 50)

Zusammenfassung

Die nachfolgende Darstellung kann nur einen kurzen und sehr gedrängten Überblick über den derzeitigen Stand der Methoden zur ganzzahligen Programmierung geben. Klassische Verfahren (Schnittebenenverfahren, klassische Branch-and-Bound- und Enumerationsverfahren) werden nur kurz und insofern erwähnt, als sie für die Beschreibung von Modifikationen und neueren Algorithmen wesentlich sind. Methoden und Anwendungen der ganzzahligen Programmierung werden vom Verfasser in einer anderen Arbeit [KORTE, 197l], die demnächst erscheinen wird, ausführlich dargestellt. Dieser Beitrag hat daher nur informierenden Charakter. Im übrigen sei auf die ausgezeichneten Übersichtsartikel von BALINSKI [1965] und BALINSKI und SPIELBERG [1969] hingewiesen, die allerdings einige neuere Entwicklungen noch nicht berücksichtigt haben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Balas, E., [1964-1]: Un Algorithme Additif pour la Résolution des Programmes Linéaires en Variables Bivalentes. Comptes Rendus de 11 Académie des Sciences (Paris) 258, 3817–3820 (1964).Google Scholar
  2. Balas, E., [1964-2]: Extension de l’Algorithme Additif à la Programmation en Nombres Entiers et à la Programmation Non Linéaire. Comptes Rendus de l’Académie des Sciences (Paris) 258, 5136–5139 (1964).Google Scholar
  3. Balas, E., [ 1965 ]: An Additive Algorithm for Solving Linear Programs with Zero-One Variables. Operations Research 13, 517–545 (1965).Google Scholar
  4. Balas, E., [ 1967 ]: Discrete Programming by the Filter Method. Operations Research 15, 915–957 (1967).Google Scholar
  5. Balas, E., [ 1968 ]: A Note on the Branch-and-Bound Principle. Operations Research 16, 442–445 (19 68).Google Scholar
  6. Balas, E., [ 1969 ]: The Intersection Cut-A New Cutting Plane for Integer Programming. Management Sciences Research Report no. 187. Carnegie-Mellon University. October 1969.Google Scholar
  7. Balas, E., [1970-1]: Intersection Cuts from Maximal Convex Extensions of the Ball and the Octahedron. Management Science Research Report no. 214. WP 21-70-1. Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh. August, 1970.Google Scholar
  8. Balas, E., [1970-2]: Alternative Strategies for Using Intersection Cuts in Integer Programming. Management Sciences Research Report no. 209. Carnegie-Mellon University. June 1970.Google Scholar
  9. Balas, E., Bowman, V.J., Glover, F. and D. Sommer, [ 1970 ]: An Intersection Cut from the Dual of the Unit Hypercube. WP no. 90-69-7. Carnegie-Mellon University. April 1970.Google Scholar
  10. Balinski, M.L., [ 1965 ]: Integer Programming: Methods, Uses, Computation. Management Science 12, 253–313 (1965). Auch in: G.B. Dantzig and A.F. Veinott (eds.): Mathematics of Decision Sciences. Part 1, 179–256. Providence: American Mathematical Society 1968.Google Scholar
  11. Balinski, M.L. and K. Spielberg, [ 1969 ]: Methods for Integer Programming: Algebraic,Combinatorial and Enumerative. In: J.E. Aronofsky (ed.): Progress in Operations Research III: Relationship between Operations Research and the Computer, 195–292. New York: Wiley 1969.Google Scholar
  12. Beale, E.M.L., [ 1965 ]: Survey of Integer Programming. Operational Research Quarterly 16, 219–228 (1965).Google Scholar
  13. Bellman, R., [ 1956 ]: Maximization over Discrete Sets. Naval Research Logistics Quarterly 3, 67–70 (1956).Google Scholar
  14. Benders, J.F., [ 1962 ]: Partitioning Procedures for Solving Mixed-Variables Programming Problems. Numerische Mathematik 4, 238–252 (1962).Google Scholar
  15. Ben-Israel, A. and A. Charnes, [ 1962 ]: On Some Problems of Diophantine Programming, Cahiers du Centre d’Études de Recherche Opérâtionelle (Bruxelles) 4, 215–280 (1962).Google Scholar
  16. Bertier, P. and B. Roy, [ 1965 ]: Une Procédure de Résolution pour une Classe de Problèmes Pouvant Avoir un Charactère Combinatoire. ICC Bulletin 4 19–28 (1965) Englische Übersetzung: A Solution Procedure for a Class of Problems Having Combinatorial Character. Working Paper ORC 67–34. Operations Research Center. University of California. September 1967.Google Scholar
  17. Birkhoff, G., [ 1967 ]: Lattice Theory. 3rd ed. Providence: American Mathematical Society 1967.Google Scholar
  18. Bowman, V.J. and G.L. Nemhauser, [ 1969 ]: Deep Cuts in Integer Programming. Core Discussion Paper no. 6925. Center for Operations Research and Econometrics. Heverlee (Belgium). August 1969.Google Scholar
  19. Bradley, G.H., [1971]: Equivalent Integer Programs and Canonical Problems. Management Science 17, 351–366 (1971).CrossRefGoogle Scholar
  20. Bradley, G.H. and P.N. Wahi, [1969]: An Algorithm for Integer Linear Programming: A Combined Algebraic and Enumeration Approach. Administrative Sciences, Yale University Report no. 29, Dec. 1969.Google Scholar
  21. Brauer, K.M., [ 1967 ]: A Note on the Efficiency of Balas1 Algorithm. Operations Research 15, 1169–1171 (1967)Google Scholar
  22. Bürdet, C.A., [l970]: A Class of Cuts and Related Algorithms in Integer Programming. Management Science Report no. 220. Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, September 1970.Google Scholar
  23. Chen, D.S. and S. Zionts, [1970]: An Extension of the Group Theoretic Approach to Integer Programming. State University of New York at Buffalo. School of Management. Working Paper Series no. 78. April 1970.Google Scholar
  24. Cook, R.A. and L. Cooper, [ 1965 ]: An Algorithm for Integer Linear Programming. Report no. AM 65-2, Department of Applied Mathematics and Computer Science. Washington University, St. Louis, Missouri. Nov. 1965.Google Scholar
  25. Dakin, R.J., [ 1965 ]: A Tree-Search Algorithm for Mixed Integer Programming Problems. The Computer Journal 8, 250–255 (1965/66).Google Scholar
  26. Dantzig, G.B., [ 1959 ]: Note on Solving Linear Programs in Integers. Naval Research Logistics Quarterly 6, 75–76 (1959).Google Scholar
  27. Driebeek, N.J., [ 1966 ]: An Algorithm for the Solution of Mixed Integer Programming Problems. Management Science 12, 576–587 (1966).Google Scholar
  28. Fleischmann, B., [1967]: Computational Experiences with the Algorithm of, Balas. Operations Research 1 5, 153–155 (1967).CrossRefGoogle Scholar
  29. Freeman, R.J., [ 1966 ]: Computational Experience with a Balasian Integer Programming Algorithm. Operations Research 14, 935–941 (1966).Google Scholar
  30. Geoffrion, A.M., [1967]: Integer Programming by Implicit Enumeration and Balas1 Method. SIAM Review 9, 178–190 (1967).CrossRefGoogle Scholar
  31. Geoffrion, A.M., [ 1969 ]: An Improved Implicit Enumeration Approach for Integer Programming. Operations Research 17, 437–454 (1969).Google Scholar
  32. Glover, F., [ 1964 ]: A Bounded Escalation Method for the Solution of Integer Linear Programs. Cahiers du Centre d ’ Etudes de Recherche Operationelle (Bruxelles) 6, 131–168 (1964).Google Scholar
  33. Glover, F., [ 1965 ]: A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem, Operations Research 13, 879–919 (1965).Google Scholar
  34. Glover, F., [ 1966 ]: Generalized Cuts in Diophantine Programming. Management Science 13, 254–268 (1966).Google Scholar
  35. Glover, F., [ 1967 ]: Stronger Cuts in Integer Programming. Operations Research 15, 1171–1177 (1967).Google Scholar
  36. Glover, F., [1968-1]: A new Foundation for a Simplified Primal Integer Programming Algorithm. Operations Research 16, 727–740 (1968).CrossRefGoogle Scholar
  37. Glover, F., [1968-2]: Surrogate Constraints. Operations Research 16, 74I–749 (1968).Google Scholar
  38. Glover, F., [ 1969 ]: Convexity Cuts. Working Paper. University of Texas at Austin. December 1969.Google Scholar
  39. Glover, F., [ 1970 ]: Cut-Search Methods in Integer Programming. Working Paper. Graduate School of Business Administration, University of Colorado, Boulder, Colorado. September, 1970.Google Scholar
  40. Glover, F. and S. Zionts, [ 1965 ]: A Note on the Additive Algorithm of Balas. Operations Research 13, 546–549 (1965).Google Scholar
  41. Golomb, S.W. and L.D. Baumert, [ 1965 ]: Backtrack Programming. Journal of the Association for Computing Machinery 12, 516–529 (19 65).Google Scholar
  42. Gomory, R.E., [1958]: Outline of an Algorithm for Integer Solutions to Linear Programs. Bulletin of the American Mathematical Society 6k, 275–278 (1958).CrossRefGoogle Scholar
  43. Gomory, R.E., [i960]: An Algorithm for the Mixed Integer Problem. RAND Paper RM-2597 RAND Corporation, July 7, 1960 oder RAND Paper P-1885 RAND Corporation, June, i960.Google Scholar
  44. Gomory, R.E., [1963-1: An Algorithm for Integer Solution to Linear Programs. In: R.L. Graves and P. Wolfe (eds.): Recent Advances in Mathematical Programming, 269–302. New York: Mc Graw Hill 1963. First issued as Princeton-IBM Mathematics Research Project Technical Report no. 1, November 17, 1958.Google Scholar
  45. Gomory, R.E., [1963-2]: All-Integer Programming Algorithm. In: Muth, J.F. and G. Thompson, (eds.) Industrial Scheduling, 193–206. Englewood Cliffs: Prentice-Hall 1963. First issued as IBM Research Center, Research Report RC-189, January 29, 1960.Google Scholar
  46. GOMORY, R.E., [ 1969 ]: Some Polyhedra Related to Combinatorial Problems. Journal Linear Alg. and Appl. 2, 451–558 (1969). Auch: IBM Research Report RC 211+5, July 1968.Google Scholar
  47. Gomory, R.E. and A.J. Hoffmann, [l963]: On the Convergence of an Integer-Programming Process. Naval Research Logistics Quarterly 10, 121–123 (1963).CrossRefGoogle Scholar
  48. Graves, G.W. and A.B. Whinston, [ 1968 ]: A New Approach to Discrete Mathematical Programming. Management Science 15, 177–190 (1968).Google Scholar
  49. Graves, G.W. and A.B. Whinston, [ 1970 ]: An Algorithm for the Quadratic Assignment Problem. Management Science 17, 453–471 (1970).Google Scholar
  50. Hammer, P.L., [l969]: A B-B-B Method for Linear and Nonlinear Bivalent Programming. Technion. Israel Institute of Technology, Haifa. Operations Research, Statistics and Economics Mimeograph Series no. 48. (1969).Google Scholar
  51. Healy, W.C., [ 1964 ]: Multiple Choice Programming. (A Procedure for Linear Programming with Zero-One Variable). Operations Research 12, 122–138 (1964).Google Scholar
  52. Hermes, H. [ 1955 ]: Einführung in die Verbandstheorie. Berlin/Göttingen/Heidelberg: Springer 1955.Google Scholar
  53. Hillier, F.S., [1969-1]: Efficient Heuristic Procedures for Integer Linear Programming with an Interior. Operations Research 17, 600–637 (1969).CrossRefGoogle Scholar
  54. Hillier, F.S., [1969-2]: A Bound-and-Scan Algorithm for Integer Linear Programming with General Variables. Operations Research 17, 638–679 (1969).CrossRefGoogle Scholar
  55. Hu, T.C., [1968]: On the Asymptotic Integer Algorithm. Mathematics Research Center, The University of Wisconsin, Madison, MRC Technical Summary Report 946, October 1968.Google Scholar
  56. Hu, T.C., [ 1969 ]: Integer Programming and Network Flows. Reading: Addison-Wesley 1969.Google Scholar
  57. Huard, P., [ 1967 ]: Programmes Mathématiques non Lineares à Variables Bivalentes. Mathematical Programming Symposium, Princeton Univ., Aug. 1967.Google Scholar
  58. Jaeschke, G., [1964]: Branching and Bounding. Eine allgemeine Methode zur Lösung kombinatorischer Probleme. Ablauf- und Planungsforschung AKOR 5, 133–155 (1964).Google Scholar
  59. Korte, B., [ 1970 ]: Bibliography on Integer Programming and Related Areas. Mimeographed Paper. Institut für Gesellschafts- und Wirtschaftswissenschaften. Universität Bonn. 1970.Google Scholar
  60. Korte, B., [ 1971 ]: Ganzzahlige Programmierung. Erscheint demnächst in Ökonometrie und Unternehmensforschung. Berlin-Heidelberg-New York: Springer Verlag.Google Scholar
  61. Korte, B., Krelle, W. und W. Oberhofer, [1969: Ein lexikographischer Suchalgorithmus zur Lösung allgemeiner ganzzahliger Programmierungsaufgaben. Unternehmensforschung 13, Teil I: 73–98, Teil II: 171–192 (1969).Google Scholar
  62. Korte, B., Krelle, W. und W. Oberhofer, [1970]: Ein lexikographischer Suchalgorithmus zur Lösung allgemeiner ganzzahliger Programmierungsaufgaben. - Nachtrag. Unternehmensforschung 228–234 (1970).Google Scholar
  63. Land, A.H. and A.G. Doig, [1960]: An Automatic Method of Solving Discrete Programming Problems. Econometrica 28, 491–520 (1960).CrossRefGoogle Scholar
  64. Laughhun, D.J., [1970]: Quadratic Binary Programming with Application to Capital-Budgeting Problems. Operations Research 18, 454–461 (1970).CrossRefGoogle Scholar
  65. Lawler, E.L. and M.C. Bell, [1966]: A Method for Solving Discrete Optimization Problems. Operations Research 14, 1098–1112 (1966).CrossRefGoogle Scholar
  66. Lawler, E.L. and D.E. Wood, [1966]: Branch-and-Bound Methods: A Survey. Operations Research 699–719 (1966).Google Scholar
  67. Little, J.D.C., Murty, K.G., Sweeney, D.W. and C. Karel, [1963]: An Algorithm for the Traveling Salesman Problem. Operations Research 11, 972–989 (1963).CrossRefGoogle Scholar
  68. Martin, G.T., [1963]: An Accelerated Euclidean Algorithm for Integer Linear Programming. In: Graves, R.L. and P. Wolfe (eds.): Recent Advances in Mathematical Programming, 311–318. New York: McGraw Hill 1963.Google Scholar
  69. Mitten, L.G., [1970]: Branch-and-Bound Methods: General Formulation and Properties. Operations Research 18, 24–34 (1970).CrossRefGoogle Scholar
  70. Petersen, C.C., [1967]: Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R + D Projects. Management Science 13, 736–750 (1967).CrossRefGoogle Scholar
  71. Roy, B., Benayoun, R. and J. Terngy, [1970-1]: From S.E.P. Procedure to the Mixed Ophelie Program. In: J. Abadie (ed.): Integer and Nonlinear Programming, Chap. 20, 419–436. Amsterdam-London: North-Holland 1970.Google Scholar
  72. Rubin, D.S. and R.L. Graves, [1970]: The Modified Dantzig Cuts for Integer Programming. Working Paper. Presented at the 7th Mathematical Programming Symposium, The Hague 1970.Google Scholar
  73. Salkin, H.M., [1970]: On the Merit of the Generalized Origin and Restarts in Implicit Enumeration. Operations Research 18, 549–554 (1970).CrossRefGoogle Scholar
  74. Shapiro, J.F., [1968-1]: Dynamic Programming Algorithms for the Integer Programming Problem - I: The Integer Programming Problem as a Knapsack Type Problem. Operations Research 16, 103–121 (1968).CrossRefGoogle Scholar
  75. Shapiro, J.F. [1968-2]: Group Theoretic Algorithms for the Integer Programming Problem II: Extension to a General Algorithm. Operations Research 16, 928–947 (1968).CrossRefGoogle Scholar
  76. Spielberg, K., [1969]: Plant Location with Generalized Search Origin. Management Science 16, 165–178 (1969).CrossRefGoogle Scholar
  77. Shareshian, R., [1967]: User’s Manual: Branch-and-Bound Mixed-Integer Programming - BBMIP. IBM General Program Library. Program Information Department (File Number 360-D-15. 2. 005 ), 1967.Google Scholar
  78. Thompson, G.L. [1964]: The Stopped Simplex Method: Basic Theory for Mixed Integer Programming. (Part I). Revue Française de Recherche Opérâtionelle 8, 159–182 (1964).Google Scholar
  79. Tomlin, J.A., [1970]: Branch-and-Bound Methods for Integer and Non- Convex Programming. In: J. Abadie (ed.): Integer and Nonlinear Programming, Chap. 21, 437–450. Amsterdam-London: North Holland 1970.Google Scholar
  80. Tui, H., [1964]: Concave Programming Under Linear Constraints. Soviet Mathematics, 1437–1440 (1964).Google Scholar
  81. Van Der Waerden, B.L. [l959]: Algebra, 2. Teil. b. Aufl. Berlin/ Gôttingen/Heidelberg: Springer 1959.Google Scholar
  82. Watters, L.J., [1967]: Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming Problems. Operations Research 15, 1171–1172 (1967)CrossRefGoogle Scholar
  83. Wilson, R., [1967]: Stronger Cuts in Gomoryf s All-Integer Programming Algorithm. Operations Research 15, 155–157 (1967).CrossRefGoogle Scholar
  84. Woiler, S., [ 1967 ]: Implicit Enumeration Algorithms for Discrete Optimization Problems. Report. Department of Industrial Engineering, Stanford University, May 1967.Google Scholar
  85. Young, R.D., [1965]: A Primal- (All-Integer) Integer Programming Algorithm. J. Res. National Bureau of Standards - B., Mathematics and Mathematical Physics, 69 B, no. 3, 213–250 (1965).Google Scholar
  86. Young, R.D., [1968]: A Simplified Primal (All-Integer) Integer Programming Algorithm. Operations Research 16, 750–782 (1968).CrossRefGoogle Scholar
  87. Young, R.D., [1968-1]: New Cuts for a Special Class of 0–1 Integer Programs. Working Paper. Rice University, Houston, Texas, October 1968.Google Scholar
  88. Young, R.D. [ 1970 ]: Hypercylindrically Deduced Cuts in Zero-One Integer Programs. Working Paper. Rice University. Houston, Texas, June 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • Bernhard Korte
    • 1
    • 2
  1. 1.Forschungsgruppe für Operations ResearchBonnDeutschland
  2. 2.Ökonometrie UniversitätBonnDeutschland

Personalised recommendations