Advertisement

The Localization Problem

Chapter
Part of the Studies in the Foundations, Methodology and Philosophy of Science book series (FOUNDATION, volume 4)

Abstract

The localization problem in relativistic quantum mechanics consists in finding (i) the operator representative X k of position and/or its eigenstates (called localized states), (ii) their properties and (iii) the representatives and properties of variables related to position such, as time, proper time and velocity. We devote this review mainly to position and briefly to variables like velocity. Time and proper time will be discussed only when relevant to position.

Keywords

Quantum Mechanic Localization Problem Proper Time Position Operator Inertial Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    Breit, G.: Proc. Nat. Acad. Sci. U.S.A. 14, 553 (1928).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Schrodinger, E.: Preuss. Akad. Wiss. Berlin 24, 418 (1930)Google Scholar
  3. Guth, E.: Ann. Physik 20, 309 (1962)MathSciNetADSCrossRefGoogle Scholar
  4. Honl, H., PAPAPETROU, A.: Z. Physik 116, 153 (1940)ADSCrossRefGoogle Scholar
  5. 3.
    Kálnay, A.J. : Phys. Rev. 1D, 1092 (1970)ADSGoogle Scholar
  6. 4.
    Coester, F.: Phys. Rev. 129, 2816 (1963).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 5.
    Fronsdal, C.: Phys. Rev. 113, 1367 (1959)MathSciNetADSCrossRefGoogle Scholar
  8. Bunge, M.: NUOVO Cimento 1, 977 (1955). See also Refs. [7], [8], [22] and [84].CrossRefGoogle Scholar
  9. 7.
    KALNAY, A. J.: Progr. Theoret. Phys. (Kyoto) 42, 1445 (1969).ADSCrossRefGoogle Scholar
  10. Bunge, M.: Ciencia e Investigación 14, 311 (1958).Google Scholar
  11. Plahte, E. : Progr. Theoret. Phys. (Kyoto), Suppl. 4, 246 (1966); 4, 291 (1966).Google Scholar
  12. Yamasaki, H.: Progr. Theoret. Phys. (Kyoto) 31, 324 (1964); 39, 372 (1968).MathSciNetADSCrossRefGoogle Scholar
  13. 8.
    Yamasaki, H.:British J. Philos. Sci. 9, 39 (1958).Google Scholar
  14. 9.
    Kàlnay A. J., Maccotrina, E.: Progr. Theoret. Phys. (Kyoto) 42, 1422 (1969);ADSzbMATHCrossRefGoogle Scholar
  15. Kàlnay A. J., Maccotrina, E.:Erratum and Addenda 43, 569 (1970)Google Scholar
  16. 10.
    Bacry, H.: Phys. Letters 5, 37 (1963);ADSCrossRefGoogle Scholar
  17. Bacry, H.: J. Math. Phys. 5,109 (1964).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 11.
    LUGARINI, G., PAURI, M.: Nuovo Cimento 57 A, 299 (1967)Google Scholar
  19. 12.
    Jordan, T. F., Mukunda, N.: Phys. Rev. 132, 1842 (1963)MathSciNetADSCrossRefGoogle Scholar
  20. 13.
    Kalnay, A.J.: Phys. Rev. 3D, 2357 (1971).MathSciNetADSGoogle Scholar
  21. 14.
    Mathews, P.M., Sankaranarayanan, A.: Progr. Theoret. Phys. (Kyoto) 26, 499 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 15.
    Mathews, P.M., Sankaranarayanan, A.: Progr. Theoret. Phys. (Koyto) 27, 1063 (1962)ADSzbMATHCrossRefGoogle Scholar
  23. Mathews, P.M., Sankaranarayanan, A., Good, R.J., JR.: Phys. Rev. 140, B509 (1965).CrossRefGoogle Scholar
  24. 16.
    Garrido L. M., Sesma, J.: Amer. J. Phys. 30, 887 (1962).ADSzbMATHCrossRefGoogle Scholar
  25. 17.
    Langbein, W.: Z. Physik 198, 304 (1967).ADSCrossRefGoogle Scholar
  26. 18.
    Bardarci, K., Acharya, R. : Nuovo Cimento 21, 802 (1961)CrossRefGoogle Scholar
  27. 19.
    Berg, R. A.: J. Math. Phys. 6, 34 (1965).ADSzbMATHCrossRefGoogle Scholar
  28. Candlin, D. J. : Nuovo Cimento 37, 1396 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 20.
    Finkelstein, R.J.: Phys. Rev. 75, 1079 (1949).MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 21.
    Hehler, W.: The quantum theory of radiation. Oxford 1954, p. 106.Google Scholar
  31. 22.
    Kolsrud, M.: Phys. Norveg. 2, 149 (1967)Google Scholar
  32. 23.
    Pryce, M. H. L.: Proc. Roy. Soc. Ser. A 195, 62 (1948).MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. Mathews, P.M., Sankaranarayanan, A.: Progr. Theoret. Phys. (Kyoto) 26,1 (1961). See alsoMathSciNetADSzbMATHCrossRefGoogle Scholar
  34. Mathews, P.M., Sankaranarayanan, A.: Progr. Theoret. Phys. (Kyoto) 32, 159 (1964).MathSciNetADSCrossRefGoogle Scholar
  35. 25.
    Papapetrou, A.: Prakt. Akad. Athénes 14, 540 (1939); 15, 404 (1940).MathSciNetGoogle Scholar
  36. 26.
    Moller, C.: Communications of the Dublin Institute for Advanced Studies A, No. 5 (1949).Google Scholar
  37. 27.
    Chakrabarti, A.: J. Math. Phys. 4, 1223 (1963).ADSzbMATHCrossRefGoogle Scholar
  38. 28.
    Shirokov, IU. M.: Soviet Physics JETP 6, 664 (1958)MathSciNetADSGoogle Scholar
  39. 29.
    Shirokov, IU.M.: Z. Èksper. Teoret. Fiz. 21, 748 (1951).Google Scholar
  40. 30.
    Melvin, M.A.: Rev. Mod. Phys. 32, 477 (1960).ADSCrossRefGoogle Scholar
  41. 31.
    Foldy, L. L., Wouthuysen, S. A.: Phys. Rev. 78, 29 (1950)ADSzbMATHCrossRefGoogle Scholar
  42. Tani, S.: Soryuschiron Kenkyu 1, 15 (1949) ;Google Scholar
  43. Tani, S.: Progr. Theoret. Phys. (Kyoto) 6, 267 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 32.
    Bose, S. K., Gamba, A., Sudarshan, G.: Phys. Rev. 113, 1661 (1959).MathSciNetADSCrossRefGoogle Scholar
  45. 33.
    Hanus, W. Janyszek, H., Rakowski, A.: Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16, 253 (1968).Google Scholar
  46. 34.
    Hanus, W., Janyszek, H., Rakowski, A.:Acta Phys. Polonica 34, 1071 (1968).Google Scholar
  47. 35.
    Baktavatsalou, M.: NUOVO Cimento 25, 964 (1962) ;MathSciNetzbMATHCrossRefGoogle Scholar
  48. Baktavatsalou, M.: Compt. Rend. Acad. Sci. Paris 258, 474 (1964)MathSciNetGoogle Scholar
  49. 36.
    Baktavatsalou, M.: Cahiers Physique 155, 1 (1963).MathSciNetGoogle Scholar
  50. PAG, P. Y.: Progr. Theoret. Phys. (Kyoto) 22, 857 (1959). See also Ref. [24].ADSCrossRefGoogle Scholar
  51. 38.
    Janyszek, H., Rakowski, A.: Acta Phys. Polonica 35, 529 (1969)MathSciNetGoogle Scholar
  52. 39.
    Case, K.M.: Phys. Rev. 95, 1323 (1954)MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. CASE, K.M.: KàLNAY,A.J.: Thesis, Chap. 3, Suppl. to vol. 11, Notas de Fisica, Centro Brasileiro de Pesquisas Fisica, Rio de Janeiro (1964).Google Scholar
  54. Case, K.M. Azcarraga, J.A. DE, Boya, L. J.: J. Math. Phys. 9, 1689 (1968)ADSCrossRefGoogle Scholar
  55. Azcarraga, J.A.DE, Oliver, L. : J. Math. Phys. 10, 1869 (1969)ADSCrossRefGoogle Scholar
  56. Azcarraga, J.A.DE, Oliver, L. : Case, K.M.: Phys. Rev. 95, 1323 (1954)MathSciNetCrossRefGoogle Scholar
  57. Chakrabarti, A. : Nuovo Cimento 18, 617 (1960)zbMATHCrossRefGoogle Scholar
  58. Sesma, J.: J. Math. Phys. 7, 1300 (1966)ADSCrossRefGoogle Scholar
  59. Strocchi, F.: NUOVO Cimento 33, 1437 (1964)MathSciNetCrossRefGoogle Scholar
  60. Parravicini, G., Sparzani, A .: NUOVO Cimento A66, 579 (1970). See alsoMathSciNetADSGoogle Scholar
  61. Beckers, J.: Phys. Rev. 3D, 952 (1971)MathSciNetADSGoogle Scholar
  62. Feshbach, H , Villars, F .: Rev. Modern Phys. 30, 24 (1958) and the review paper byMathSciNetADSzbMATHCrossRefGoogle Scholar
  63. DE VRIES, E.: Fortschr. Physik 18, 149 (1970)CrossRefGoogle Scholar
  64. 40.
    Bopp, F.: S.-B. Bay. Akad. Wiss., Math.-Naturw. Kl., H 2, 12 (1967) ;Google Scholar
  65. Bopp, F.:Z. Physik 200, 117 (1967); 200, 142 (1967); 200, 133 (1967).ADSCrossRefGoogle Scholar
  66. Bopp, F. AHMAVAARA, Y.: J. Math. Phys. 6, 87 (1965); 6, 220 (1965)Google Scholar
  67. Hellund, E. J., Tanaka, K.: Phys. Rev. 94, 192 (1954)MathSciNetADSzbMATHCrossRefGoogle Scholar
  68. Rojansky, v.: Phys. Rev. 97, 507 (1955)MathSciNetADSCrossRefGoogle Scholar
  69. 41.
    Jauch, J.M., Piron, C.: Helv. Phys. Acta 40, 559 (1967).zbMATHGoogle Scholar
  70. 42.
    Newton, T. D., Wigner, E. P.: Rev. Modern Phys. 21, 400 (1949)ADSzbMATHCrossRefGoogle Scholar
  71. 43.
    CASTELL, L.: Nuovo Cimento 46 A, 1 (1966).Google Scholar
  72. 44.
    Galindo, A.: Nuovo Cimento 37, 413 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 45.
    Wightman, A.S.: Rev. Mod. Phys. 34, 845 (1962).MathSciNetADSCrossRefGoogle Scholar
  74. 46.
    Lunn, M. : J. Phys. A, Ser. II, 2, 17 (1969)MathSciNetGoogle Scholar
  75. Wightmann, A.S., Schweber, S.S.: Phys. Rev. 98, 812 (1955)MathSciNetADSCrossRefGoogle Scholar
  76. Fonda, L. : NUOVO Cimento A56, 1095 (1968)ADSGoogle Scholar
  77. 47.
    Weidlich, W., Mitra, A. K. : Nuovo Cimento 30, 385 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  78. Kalnay, A.J., Torres, P.L.: Phys. Rev. 3D, 2977 (1971). See also References quoted in this paper.ADSGoogle Scholar
  79. Philips, T.O.: Phys. Rev. 136, B893 (1964); - Thesis, Princeton University, 1963, available through Microfilm-Xerography-University Microfilms, Inc., Ann. Arbor, Mich.MathSciNetADSCrossRefGoogle Scholar
  80. 50.
    Gallardo, J.A., Kalnay, A.J., Stec, B.S., Toledo, B.P.: Nuovo Cimento 49, 393 (1967)ADSCrossRefGoogle Scholar
  81. 51.
    SchröDER, U.: Ann. Physik 14, 91 (1964).MathSciNetCrossRefGoogle Scholar
  82. 52.
    Knight, J.M.: J. Math. Phys. 2, 459 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  83. Knight, J.M. LICHT, A. L.: J. Math. Phys. 4, 1443 (1963)ADSCrossRefGoogle Scholar
  84. 53.
    Philips, T. O., Wigner, E. P.: In: Group theory and its application, edit, by E. M. Loebl. New York: Academic Press Inc. 1968.Google Scholar
  85. 54.
    Gallardo, J.C., Kalnay, A. J., Risemberg, S. H.: Phys. Rev. 158, 1484(1967).MathSciNetADSzbMATHCrossRefGoogle Scholar
  86. 55.
    Kalnay, A.J., Torres, P.L.: Internat. J. Theoret. Phys. (L) 3, 167 (1970).ADSCrossRefGoogle Scholar
  87. KALNAY, A.J., TORRES, P.L.:(Work in progress.)Google Scholar
  88. 57.
    Castell, L.: Nuovo Cimento 49, 285 (1967).MathSciNetADSCrossRefGoogle Scholar
  89. 58.
    Kastrup, H.A. : Phys. Rev. 143, 1021 (1966)MathSciNetADSCrossRefGoogle Scholar
  90. Flint, H.T., Marjorie WILLIAMSON, E.: Proc. Roy. Soc. (London), Ser. A207, 308 (1951)Google Scholar
  91. Maduemezia, A.: Nuovo Cimento 51 A, 585 (1967)MathSciNetADSGoogle Scholar
  92. 59.
    Shirokov, M.I.: Ann. Physik 10, 60 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  93. 60.
    Kalnay, A. J., Toledo, B.P. : Nuovo Cimento 48, 997 (1967)MathSciNetADSzbMATHCrossRefGoogle Scholar
  94. 61.
    Fleming, G.N.: Phys. Rev. 137, B 188 (1965); 139, B 963 (1965).MathSciNetADSCrossRefGoogle Scholar
  95. 62.
    Fleming, G. N.: J. Math. Phys. 7, 1959 (1966).MathSciNetADSzbMATHCrossRefGoogle Scholar
  96. 63.
    Mcdonald, S.C. : J. Math. Phys. 11, 1158 (1970)Google Scholar
  97. 64.
    Johnson, J.E. : Phys. Rev. 181, 1755 (1969) ;MathSciNetADSCrossRefGoogle Scholar
  98. Johnson, J.E. : Phys. Rev. 3D, 1735 (1971)ADSGoogle Scholar
  99. 65.
    Beckmann, P.: Nuovo Cimento 27, 868 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  100. Close, F.E., Osborn, H.: Phys. Rev. 2D, 2127 (1970)ADSGoogle Scholar
  101. Osborn, H.: Phys. Rev. 176, 1514 (1968)ADSCrossRefGoogle Scholar
  102. 66.
    Gallardo, J.A., Kalnay, A.J., Stec, B.A., Toledo, B.P. : Nuovo Cimento 48, 1008 (1967)ADSCrossRefGoogle Scholar
  103. 67.
    Kalnay, A. J.: Boi. Imaf (Universidad Nacional de Cordoba, Argentina) 2, 41 (1966)Google Scholar
  104. 68.
    Baldo, M., Recami, E. : Lett. Nuovo Cimento 2, 643 (1969)CrossRefGoogle Scholar
  105. 69.
    Olkhovsky, V. S., Recami, E.: Lett. Nuovo Cimento 4, 1165 (1970).CrossRefGoogle Scholar
  106. Recami, E. : Rend. Accad. Naz. Lincei, CI. Sci. Fis., Mat. Natur., Ser. 8, 49, 77 (1970).Google Scholar
  107. 70.
    BROYLES, A.A.: Phys. Rev. ID, 979 (1970)Google Scholar
  108. - Space-time position operators and spin 1/2 particles (Preprint), University of Florida.Google Scholar
  109. 72.
    Barut, A. O., Malin, S. : Rev. Modern Phys. 40, 632 (1968)ADSzbMATHCrossRefGoogle Scholar
  110. 73.
    Bopp, F. : Z. Angew. Phys. 1, 387 (1949)Google Scholar
  111. 74.
    Rosenbaum, D.M.: J. Math. Phys. 10, 1127 (1969)MathSciNetADSzbMATHCrossRefGoogle Scholar
  112. 75.
    Hanus, W.: Reports on Math. Physics 1, 245 (1971).MathSciNetGoogle Scholar
  113. 76.
    Acharya, R., Sudarshan, E.C.G.: J. Math. Phys. 1, 532 (1960).ADSzbMATHCrossRefGoogle Scholar
  114. 77.
    Amrein, W.O.: Helv. Phys. Acta 42, 149 (1969).zbMATHGoogle Scholar
  115. 78.
    Beck, G.: Rev. Fac. Ci. Univ. Coimbra 10, 66 (1942)Google Scholar
  116. Szamosi, G. : NUOVO Cimento 20, 1090 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 79.
    Coreen, H.C.: Phys. Rev. 121,1833 (1961).ADSCrossRefGoogle Scholar
  118. 80.
    Fradkin, D. M., Good, R. J R.: Rev. Modern Phys. 33, 343 (1961).ADSzbMATHCrossRefGoogle Scholar
  119. 81.
    Giambiagi, J.J. : Nuovo Cimento 16, 202 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  120. Nishiyama, T.: Progr. Theoret. Phys. (Kyoto) 7, 417 (1952)MathSciNetADSzbMATHCrossRefGoogle Scholar
  121. 82.
    Hanus, W.: Acta Phys. Polon. 29, 463 (1966).Google Scholar
  122. 83.
    Koba, Z.: Progr. Theoret. Phys. (Kyoto), Suppl. 8, 1 (1958) ;ADSCrossRefGoogle Scholar
  123. Koba, Z.: Nuovo Cimento 3, 1 (1956); - 3, 214 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  124. 84.
    KOLSRUD, M.: Phys. Math. Univ. Oslo, Report No. 27 (1965);Google Scholar
  125. Kolsrud, M.:Nuovo Cimento 39, 504 (1965).MathSciNetCrossRefGoogle Scholar
  126. 85.
    Schlieder, S.: Comm. Math. Phys. 1, 265 (1965).MathSciNetADSzbMATHCrossRefGoogle Scholar
  127. 86.
    We have no place to discuss two important subjects related to the locahzation problem: Local observables and localized fields. See e.g. Araki, H.: J. Math. Phys. 5,1 (1964) ;MathSciNetADSzbMATHCrossRefGoogle Scholar
  128. Araki, H. : Progr. Theoret. Phys. (Kyoto) 32, 844 (1964)MathSciNetADSzbMATHCrossRefGoogle Scholar
  129. ARAKI, H. : JAFFE, A. M.: Phys. Rev. 158, 1454Google Scholar
  130. Khoruzhii, S.S.: Theoret. and Math. Physics USSR 1, 73 (1969).ADSzbMATHCrossRefGoogle Scholar
  131. Wight-MAN, A. S.: Ann. Inst. H. Poincaré, Sect. Al, 403 (1964).MathSciNetGoogle Scholar
  132. BLOKHINTSEV, D.I.: Report International Centre for Theoretical Physics, Trieste, IC/67/36;Google Scholar
  133. Blokhintsev, D.I.: Acta Phys. Acad. Sci. Hungar. 22, 307 (1967)CrossRefGoogle Scholar
  134. Blokhintsev, D.I Galindo, A.: Helv. Phys. Acta 41, 257 (1968).Google Scholar
  135. Garrido, L.M., Pascual, P.: Nuovo Cimento 12, 181 (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  136. GüRSEY, F.: Report Çekmece Nuclear Research and Training Center, Istambul, “Localization properties of the unitary representations of the Poincaré group in field theory”.Google Scholar
  137. GüRSEY, F. Heitler, W.: Proc. Roy. Irish Acad., Sect. A 49,1(1943).MathSciNetGoogle Scholar
  138. Korff, D.: J. Math. Phys. 5, 869 (1964).MathSciNetADSzbMATHCrossRefGoogle Scholar
  139. LICHT, A. L.: J. Math. Phys. 7, 1656 (1966). See also references quoted in this paper.Google Scholar
  140. MARX, E.: Nuovo Cimento 57B, 43 (1968); 60 A, 669 (1969); 60A, 683 (1969).Google Scholar
  141. Pryce, M.H.L.: Proc. Roy. Soc. (London), Ser. A150, 166 (1935).ADSGoogle Scholar
  142. RAZAVY, M.: NUOVO Cimento 63 B, 271 (1969).Google Scholar
  143. Shirokov, M.I.: J. Nuclear Physics USSR 2, 332 (1965).Google Scholar
  144. STEINMANN, O.: Comm. Math. Phys. 7, 112Google Scholar
  145. Wakano, M.: Progr. Theoret. Phys. (Kyoto) 35, 1117 (1966)ADSCrossRefGoogle Scholar
  146. 88.
    Messiah, A.: Mécanique Quantique. Paris: Dunod Cie. 1960Google Scholar
  147. If an author chose (i) as his approach and confirms his results through (ii), he will be only quoted when writing the properties he used as axioms.Google Scholar
  148. The set is not exhaustive. Some properties were not listed because of difficulties of systematization.Google Scholar
  149. This requirement has different forms: If X is an operator, it means that X be a 4-vector operator; if X is a c-number, it only means the appropriate transformation properties of mean values.Google Scholar
  150. However it should not be imposed on the neutrino. See Ref. [13].Google Scholar
  151. However if (b 1) is rejected the behaviour of position under translations is not clear.Google Scholar
  152. For simplicity we shall not discuss the notion of elementary systems, for which NW’s axioms are imposed. See Ref. [42].Google Scholar
  153. In NW’s paper, for simplicity, it is not taken into account the fact that eigenstates of a variable with continuum spectra (as position) cannot be strictly observed, but Wight- man’s paper (Ref. [45]) implies that under essentially the same ideas of NW’s paper but taking into account this point in a more rigurous way, position operator exists and is unique, which coincides with the results of NW.Google Scholar
  154. 96.
    Jauch, J.M.: Foundations of quantum mechanics. Addison-Wesley Publishing Company 1968.zbMATHGoogle Scholar
  155. We are indebted to Prof. M. BUNGE for calling our attention to this possibility (M. BUNGE, private communication).Google Scholar
  156. Starting from second quantization SCHRöDER found related results (cf. Ref. [51]). KNIGHT (Ref. [52]), working in quantum field theory obtained non orthogonal but Lorentz invariant localized states such that they may not contain a finite number of particles.Google Scholar
  157. 99.
    InÖNü, E., Wigner, E. P.: Nuovo Cimento 9, 705 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 100.
    Hamermesh, M.: Ann. Physics 9, 518 (1960)MathSciNetADSCrossRefGoogle Scholar
  159. Normal operators are those whose Hermitian and pure anti-hermitian parts commute.Google Scholar
  160. Notice that in relativistic quantum mechanics the state vector scalar product is not the usual one (see e.g. Ref. [42]) so that the standard theorem “reality of eigenvalues implies Hermiticity” does not hold (cf. Ref. [3]).Google Scholar
  161. 103.
    PAULI, W., in: Handbuch der Physik, Bd. 5/1, edit, by S. FLüGGE. Berlin-Göttingen- Heidelberg: Springer 1958.Google Scholar
  162. The physical reason is that the time in which a quantum experiment is done is measured as the classical time of the (macroscopic) frame of reference.Google Scholar
  163. 105.
    SCHRöDINGER, E.: Berl. Ber. p. 238 (1931).Google Scholar
  164. An exceptional case is the one of Bunge’s X (which formally is a 4-vector) whose time component is not a c-number. The exception arises from the fact that in Bunge’s theory the description of localization is not done with X alone but with the pair (Z”, x”) where x is the ordinary c-number time (cf. Refs. [6] and [7]). This implies that the above mentioned objection do not apply to BUNGE’S X”.Google Scholar
  165. 107.
    Schweber, S.S.: An introduction to relativistic quantum field theory, chap. 3. New York 1964Google Scholar
  166. 108.
    Peres, A.: Lett. Nuovo Cimento 1, 837 (1969).CrossRefGoogle Scholar
  167. 109.
    Kemble, E.C.: The fundamental principles of quantum mechanics, p. 249 New York 1958zbMATHGoogle Scholar
  168. See Section 3 of Ref. [60].Google Scholar
  169. For a correction of a mistake in Ref. [60] see the third footnote on p. 1434 of Ref. [9].Google Scholar
  170. 112.
    For a related work on linear momentum see Gruber, G. R.: Found. Physics 1, 227 (1971).ADSCrossRefGoogle Scholar
  171. 113.
    For earlier work related to these, see STUCKELBERG, E. C. G.: Helv. Phys. Acta 14, 322 (1941); 15, 23 (1942).Google Scholar
  172. 114.
    FLEMING, G. N.: Phys. Rev. ID, 542 (1970).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  1. 1.Departamento de FísicaFacultad de Ciencias, Universidad Central de VenezuelaCaracasVenezuela

Personalised recommendations