Skip to main content

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((1527,volume 16 / 2))

Abstract

Radioactivity is the manifestation of an unstable (radioactive) nucleus going through a single or a series of internal readjustments (decays), more or less complex, leading eventually to a more stable configuration. The probability λ of this process occurring within a unit interval of time is characteristic of the nuclear species and it is independent of the length of time during which the radioactive nucleus has been in existence. The value of λ (decay constant) has been found to be independent of the chemical and physical status of the atom; this observation has been attributed to the fact that the energies involved in the latter, though sufficient to affect the extranuclear electrons, are usually too small to influence the course of events within the nucleus1. Hence, if a sufficiently large number N of radioactive atoms is in existence at any one time t, the number dN undergoing decay in a sufficiently short time dt can be expressed in differential form as :

$$dN = - \lambda N\,dt$$
(1)

the negative sign indicating that, through decay, the number of radioactive atoms is decreasing. Integration of this equation leads to the well known exponential law of decay

$$N\left( t \right) = N_0 e^{ - \lambda t} $$
(2)

which states that in a population of N 0 radioactive atoms existing at time zero only a fraction e −λt will be present at a later time t. Although this number is adequate to describe the process, other quantities are sometimes used more frequently to indicate the rapidity of decay. Thus the time T within which N 0 is reduced to one half is termed the half life; it can be easily calculated from (2) by putting e −λT = 0.5, namely

$$T = 0.693/\lambda .$$
(3)

Useful in many calculations is the mean (or average life) τ of the radioactive nucleus: since between time t and t+dt, λN(t) nuclei that have lived a time t have decayed, τ can be defined as

$$\tau = \frac{1} {{N_0 }}\int\limits_0^\infty {t\lambda \,N\left( t \right)dt = \lambda \int\limits_0^\infty {te^{ - \lambda t} dt = \frac{1} {\lambda }.} } $$
(4)

This expression indicates that during an average life the population has been reduced to e−1 = 0.368 of its initial value and that τ = 1.44 T. It is obvious from (1) that if the number dN(t)/dt of atoms decaying the unit time can be measured at any one time t, the population at that time can be simply calculated from

$$N\left( t \right) = \frac{{d\,N}} {{\lambda \,dt}} = \frac{{\tau \,dN}} {{dt}}.$$
(5)

Expression (5) indicates that the decay constant of a substance can be computed by measuring the variation in activity dN/dt without knowledge of the actual number of atoms actually present; namely, without the need of absolute standardization (vide infra) of the sample but by simple measurements in instruments of unknown but reproducible efficiency. Radioactive substances are usually measured in units of one curie (Ci), which is defined as “the quantity of any radioactive nuclide in which the number of disintegrations per second is 3.700 × 10−10”. It is worthwhile noting that the mass of a curie of a radioactive element varies tremendously throughout the atomic scale. In particular from (5) one obtains the number of atoms per curie :

$$N\left( t \right) = 3.7 \times 10^{10} \times \tau $$

and the mass M in grams

$$\begin{array}{*{20}c} M \hfill & { = \frac{{{\text{atomic}}\,{\text{number}}\, \times N\left( t \right)}} {{6.02 \times 10^{23} }}} \hfill \\ {} \hfill & { = 6.14 \times 10^{ - 14} \times \tau \times {\text{atomic}}\,{\text{number}}} \hfill \\\end{array} $$

where τ is given in seconds and 6.02 × 1023 is Avogadro’s number1.

Work performed under the auspices of the U.S. Atomic Energy Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. A.: The standardization of electron-capture isotopes. Int. J. appl. Radiat. 1, 289–298 (1957).

    CAS  Google Scholar 

  • Aglintsev, K. K., and V. P. Kasatkin : Dosimetry method for β-radiation based on investigations of the electron spectra in the fields of β-emitters. Atomnaya Energiya 7, 138–143 (1959).

    Google Scholar 

  • Altshuler, B., N. Nelson and M. Kuschner: Estimation of lung tissue dose from the inhalation of radon and daughters. Hlth Phys. 10, 1137–1161 (1964).

    CAS  Google Scholar 

  • Anderson, E.C.: Low level counting: from archeological artifacts to nuclear reactors. Estratto degli Atti del Congresso Scientifico-Sezione Nucleare, V. Rassegna Int. Electronica Nuclear, Roma, p. 279–306, 1958.

    Google Scholar 

  • Ardashnikov, S. N., and N. S. Chetverikov: Methods and apparatus — The dosimetry of ionizing radiations of finite range. Biofizika 3, 494–515 (1958).

    Google Scholar 

  • Berger, M. J., and S. M. Seltzer: Results of some recent transport calculations for electrons and Bremsstrahlung. National Bureau of Standards Report 8509, 1964.

    Google Scholar 

  • Bertinchamps, A. J., and G. C. Cotzias: Dosimetry of radioisotopes. Science 128, 988–990 (1958).

    PubMed  CAS  Google Scholar 

  • Bush, F.: Energy absorption in radium therapy. Brit. J. Radiol. 19, 14–21 (1946).

    PubMed  CAS  Google Scholar 

  • — The integral dose received from a uniformly distributed radioactive isotope. Brit. J. Radiol. 22, 96–105 (1949).

    PubMed  CAS  Google Scholar 

  • Butler, J. W.: Automation of experimental science. J. Data Management 3, 32–39 (1965).

    Google Scholar 

  • Cameron, J. R., F. Daniels, N. Johnson and G. Kenney : Radiation dosimetry utilizing the thermoluminescence of lithium fluoride. Science 134, 333–334 (1961).

    PubMed  CAS  Google Scholar 

  • Campion, P. J.: The standardization of radioisotopes by the beta-gamma coincidence method using high efficiency detectors. Int. J. appl. Radiat, 4, 232–248 (1959).

    CAS  Google Scholar 

  • Caro, L. G.: Considerations on high resolution autoradiography. J. roy. micr. Soc. 83, 127–133 (1964).

    PubMed  CAS  Google Scholar 

  • Charlton, D. E., and D. V. Cormack: A method for calculating the alpha-ray dosage to soft tissue-filled cavities in bone. Brit. J. Radiol. 35, 473–477 (1962a).

    PubMed  CAS  Google Scholar 

  • — — Energy dissipation in finite cavities. Radiat. Res. 17, 34–49 (1962b).

    PubMed  CAS  Google Scholar 

  • Chhabra, A. S.: 90Sr—90Y beta-ray (and Bremsstrahlung) depth-dose measurements in Lucite. Radiology 79, 1001–1007 (1962).

    PubMed  CAS  Google Scholar 

  • — Effect of silver halide content on the film dosimetry of a 90Sr—90Y applicator. Argonne National Laboratory Radiological Physics Division Semiannual Report, ANL-6646, 68–75 (1963).

    Google Scholar 

  • Clark, R. K., S. S. Brar and L. D. Marinelli: Ionization of air by beta rays from point sources. Radiology 64, 94–103 (1955).

    PubMed  CAS  Google Scholar 

  • Dousset, M., and J. Le Grand: Etude theorique de la dose delivrée à un tissu superficiellement contamine par un emetteur-α. Hlth Phys. 11, 171–178 (1965).

    CAS  Google Scholar 

  • Dudley, R. A.: Photographic film dosimetry. In: Radiation dosimetry, edit. Hine and Brownell, chapt. 7, p. 300–355. New York: Academic Press 1956.

    Google Scholar 

  • Dutreix, P.: Dosimetrie beta dans les applications interstitielles. J. de Radiol. 41, 731–745 (1960).

    CAS  Google Scholar 

  • Emery, E.W.: Personal communication, Sept. 1954. Quoted by Loevinger, Radiology 66 (1956).

    Google Scholar 

  • Erf, L. A.: Retention of radiophosphorus in whole and aliquot portions of tissues of patient dead of leukemia. Proc. Soc. exp. Biol. (N.Y.) 47, 287–289 (1941).

    CAS  Google Scholar 

  • — Clinical studies with the aid of radiophosphorus. II. The retention of radiophosphorus by tissues of patients dead of leukemia. Amer. J. med. Sci. 203, 529–535 (1942).

    CAS  Google Scholar 

  • —, and G. Friedlander: Phosphorus exchange in tissues of patients with lymphoid leukemia. Proc. Soc. exp. Biol. (N.Y.) 47, 134–136 (1941).

    CAS  Google Scholar 

  • —, and J.H.Lawrence: Phosphorus metabolism in neoplastic tissue. Proc. Soc. exp. Biol. (N.Y.) 46, 694–695 (1941).

    CAS  Google Scholar 

  • Evans, R. D.: Radioactive-series decay. In: The Atomic nucleus, chapt. 15, p. 470–510. New York: McGraw-Hill (1955a).

    Google Scholar 

  • — Passage of heavy charged particles through matter. In: The Atomic nucleus, chapt. 22, p. 632–668. New York: McGraw-Hill (1955b).

    Google Scholar 

  • Failla, P., and G. Failla: Measurement of the dose in small tissue volumes surrounding “point” sources of radioisotopes. Radiat. Res. 13, 61–91 (1960).

    PubMed  CAS  Google Scholar 

  • Forssberg, A.: A study of the distribution of radioactive phosphorus in three cases of cancer. Acta radiol. (Stockh.) 27, 88–92 (1946).

    CAS  Google Scholar 

  • Goodheart, C. R.: Radiation dose calculation in cells containing intra-nuclear tritium. Radiat. Res. 15, 767–773 (1961).

    PubMed  CAS  Google Scholar 

  • Gunn, S. R.: Radiometric calorimetry: A review. Nucl. Instr. Methods 29, 1–24 (1964).

    CAS  Google Scholar 

  • Hale, J.: The use of interstitial radium dose rate tables for other radioactive isotopes. Amer. J. Roentgenol. 79, 49–53 (1958).

    PubMed  CAS  Google Scholar 

  • Harper, P. V., and K. Lathrop: Implant radiation therapy for carcinoma of the pancreas. A.M.A. Arch. Surg. 77, 613–620 (1958).

    CAS  Google Scholar 

  • — R. D. Moseley jr., W. A. Kelly, W. Fenge and W. de Vos: Experiences with yttrium90 hypophysectomy. Suppl. Strahlentherapie 38, 270–278 (1958).

    Google Scholar 

  • Hayes, F. N.: Liquid scintillators: Attributes and applications. Int. J. appl. Radiat. 1, 46–56 (1956).

    CAS  Google Scholar 

  • Hine, G. J.: Scattering of secondary electrons produced by gamma rays in materials of various atomic numbers. Physical. Rev. 82, 755–757 (1951).

    CAS  Google Scholar 

  • — Secondary electron emission and effective atomic numbers. Nucleonics 10 (1), 9–15 (1952).

    CAS  Google Scholar 

  • — B. A. Burrows, L. Apt, M. Pollycove, J. F. Ross and L. A. Sarkes : Scintillation counting for multiple-tracer studies. Nucleonics 13 (2), 23–25 (1955).

    CAS  Google Scholar 

  • Hoecker, F. E., and P. G. Roofe: Studies of radium in human bone. Radiology 56, 89–98 (1951).

    PubMed  CAS  Google Scholar 

  • Howarth, J. L.: Calculation of the absorbed dose in soft-tissue cavities in bone irradiated by X-rays. Radiat. Res. 24, 158–183 (1965a).

    PubMed  CAS  Google Scholar 

  • — Calculation of the alpha-ray absorbed dose to soft tissue cavities in bone. Brit. J. Radiol. 38, 51–56 (1965b).

    PubMed  CAS  Google Scholar 

  • International Atomic Energy Agency: Medical radioisotope scanning. Vienna: IAEA 1959.

    Google Scholar 

  • — Metrology of radionuclides. Vienna: IAEA 1960.

    Google Scholar 

  • — Whole-body counting. Vienna: IAEA 1962.

    Google Scholar 

  • — Assessment of radioactivity in man. Vienna: IAEA 1964.

    Google Scholar 

  • International Commission on Radiological Protection, and International Commission on Radiological Units and Measurements: Report of the RBE committee to the ICRP and ICRU. Hlth Phys. 9, 357–386 (1963).

    Google Scholar 

  • International Commission on Radiological Units and Measurements (ICRU): National Bureau of Standards Handbook, 18, 1961

    Google Scholar 

  • International Commission on Radiological Units and Measurements: Report 10a, Radiation quantities and units. National Bureau of Standards, Handbook 84, 1962.

    Google Scholar 

  • — Radioactivity. National Bureau of Standards, Handbook 86, 1963.

    Google Scholar 

  • International Committee on Radiological Protection: Report of Committee II on permissible dose for internal radiation (1959) with bibliography for biological, mathematical and physical data. Health Physics 3, 1–380 (1960).

    Google Scholar 

  • Jacobi, W.: The dose to the human respiratory tract by inhalation of short-lived 222Rn- and 220Rn-decay products. Hlth Phys. 10, 1163–1174 (1964).

    CAS  Google Scholar 

  • Johns, H. E., and J. S. Laughlin: Interaction of radiation with matter. In: Radiation dosimetry, edit. Hine and Brownell, chapt. 2, p. 116–117 and 121. New York: Academic Press 1956.

    Google Scholar 

  • Kellershohn, C: Sulla possibilita d’utilizare le radiazioni di frenaggio (Bremsstrahlung) per la rivelazione esterna del radiofosforo 32P fissato nei tessuti. Minerva nucleare (Torino) 1, 130–135 (1957).

    Google Scholar 

  • — B. Herzberg et J. Martin: Possibilité et interêt de la détection externe par Bremsstrahlung de radiophosphore 32P dans l’organisme. Strahlentherapie 38, 331–347 (1958).

    Google Scholar 

  • Kenny, J. M., L. D. Marinelli and H. Q. Woodard: Tracer studies with radioactive phosphorus in malignant neoplastic disease. Radiology 37, 683–687 (1941).

    Google Scholar 

  • Kononenko, A. M.: Calculation of the intensity of the alpha-radiation dose arising from a radioactive substance distributed inside the organism. Biophysics 2, 98–117 (1957).

    Google Scholar 

  • — Taking consideration of the inhomogeneity of to specific energy loss in calculating the average dose of alpha-radiation. Radiobiologiia 3, 915–919 (1963).

    PubMed  CAS  Google Scholar 

  • —, and V. A. Petrov: Method and Apparatus — Certain aspects of the dosimetry of distributed sources of β-radiation. Biofizika 5, 217–224 (1960).

    PubMed  CAS  Google Scholar 

  • Kraushaar, J. J., E. D. Wilson and K. T. Bainbridge: Comparison of the values of the disintegration constant of 7Be in Be, BeO, and BeF. Physical. Rev. 90, 610–614 (1953).

    CAS  Google Scholar 

  • Lamerton, L. F., and E. B. Harriss: Resolution and sensitivity considerations in autoradiography. J. Photographic Sci. 2,135–144 (1954).

    Google Scholar 

  • Lawrence, J. H., K. G. Scott and L. W. Tuttle: Studies on leukemia with the aid of radioactive phosphorus, p. 33–58. In New Internat. Clinics III, Ser. 2. New York: J. B. Lippincott 1939.

    Google Scholar 

  • Liden, K.: The determination of 90Sr and other γ-emitters in human beings from external measurements of the Bremsstrahlung, 2nd U.N. Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva 1958, A/Conf. 15/P 171, Sweden.

    Google Scholar 

  • Loevinger, R.: Distribution of absorbed energy around a point source of β-particles. Science 112, 530–531 (1950).

    PubMed  CAS  Google Scholar 

  • Loevinger, R.: The dosimetry of beta radiations. Radiology 62, 74–82 (1954).

    PubMed  CAS  Google Scholar 

  • — The dosimetry of beta sources in tissue. The point function. Radiology 66, 55–62 (1956).

    PubMed  CAS  Google Scholar 

  • — Average energy of allowed beta-particle spectra. Phys. in Med. Biol. 1, 330–339 (1957).

    CAS  Google Scholar 

  • —, and S. Feitelberg: Using Bremsstrahlung detection by a scintillator for simplified beta counting. Nucleonics 13 (4), 42–45 (1955).

    Google Scholar 

  • — J. G. Holt and G. J. Hine: Internally administered radioisotopes. In: Radiation dosimetry, edit. Hine and Brownell, chapt.17 p. 803–873. New York: Academic Press 1956.

    Google Scholar 

  • — E. M. Japha and G. L. Brownell: Discrete radioisotope sources. In: Radiation dosimetry, edit. Hine and Brownell, chapt. 16, p. 693–799. New York: Academic Press 1956.

    Google Scholar 

  • Low-Beer, B.V. A.: Estimation of dosage for intravenously administered 32P calculation based on two compartment distribution of the isotope. Amer. J. Roentgenol. 67, 28–41 (1952).

    PubMed  CAS  Google Scholar 

  • Marinelli, L. D.: Dosage determination with radioactive isotopes. Amer. J. Roentgenol. 47, 210–216 (1942).

    CAS  Google Scholar 

  • — Radiation dosimetry of internally administered beta-ray emitters-status and prospects. Radiology 63, 656–661 (1954).

    PubMed  CAS  Google Scholar 

  • —, and B. Goldschmidt: Concentration of P32 in some superficial tissues of living patients. Radiology 39, 454–463 (1942).

    CAS  Google Scholar 

  • —, and R. F. Hill: Radiation dosimetry in the treatment of functional thyroid carcinoma with 131I. Radiology 55, 494–502 (1950).

    PubMed  CAS  Google Scholar 

  • — E. H. Quimby and G. J. Hine: Dosage determination with radioactive isotopes. II. Practical considerations in therapy and protection. Amer. J. Roentgenol. 59, 260–281 (1948).

    CAS  Google Scholar 

  • — J. B. Trunnell, R. F. Hill and F. W. Foote : Factors involved in the experimental therapy of metastatic thyroid carcinoma with I131. A preliminary report. Radiology 51, 553–557 (1948).

    CAS  Google Scholar 

  • Marshall, J. H.: How to figure shapes of betaray spectra. Nucleonics 13(8), 34–38 (1955).

    CAS  Google Scholar 

  • Mayneord, W. V.: Energy absorption. Brit. J. Radiol. 13, 235–247 (1940).

    Google Scholar 

  • — Some applications of nuclear physics to medicine. Brit. J. Radiol. Suppl. 2 (1950).

    Google Scholar 

  • — The concept and estimation of integral absorbed dose. In: Quantities, units and measuring methods of ionizing radiation, p. 134–148. Milano: Ulrico Hoepli 1958.

    Google Scholar 

  • —, and W. K. Sinclair: The dosimetry of artificial radioactive isotopes. Advanc. biol.med. Phys. 3, 1–63 (1953).

    CAS  Google Scholar 

  • Mays, C. W.: Determination of localized alpha dose I with particular emphasis on plutonium. Univ. of Utah, Radiobiology Report COO-217, 161–180 (1958).

    Google Scholar 

  • — Determination of localized dose II from alpha-emitters buried in mineralized bone. Univ. of Utah, Radiobiology Report COO-220, 200–206 (1960).

    Google Scholar 

  • —, and K. A. Sears: Determination of localized alpha dose III from surface and volume deposits of 239Pu, 228Th, and 226Ra. Univ. of Utah, Radiobiology Report COO-226, 78–85 (1962).

    Google Scholar 

  • Mehl, H. G.: The distribution of a pure betaemitter in the human body. Problems and preliminary results of Bremsstrahlung measurements in vivo. In: Medical radioisotope scanning, p. 125–139. Vienna: IAEA 1959.

    Google Scholar 

  • Meyer, S., and E. Schweidler: Radioaktivität. Berlin: B. G. Teubner 1927.

    Google Scholar 

  • Michel, W. S., G. L. Brownell and J. Mealey, jr.: Designing sensitive plastic well counters for beta rays. Nucleonics 14(11), 96–100 (1956).

    Google Scholar 

  • Myant, N. B., B. D. Corbett, A. J. Honour and E. E. Pochin : Distribution of radioiodide in man. Clin. Sci. 9, 405–419 (1950).

    CAS  Google Scholar 

  • —, and E. E. Pochin : The metabolism of radiothyroxine in man. Clin. Sci. 9, 421–440 (1950).

    CAS  Google Scholar 

  • Naidu, R.: Etude des courbes d’ ionisation des rayons α. Ann. Phys. 1, 72–122 (1934).

    CAS  Google Scholar 

  • National Bureau of Standards: Tables for the analysis of beta spectra. Applied math, series 13, Wash. D. C. 1952.

    Google Scholar 

  • O’Brien, K., S. Samson, R. Sanna and J. E. McLaughlin : The application of “onegroup” transport theory to β-ray dosimetry. Nucl. Sci. Engng. 18, 90–96 (1964).

    Google Scholar 

  • Odeblad, E.: Approximate formulas describing transmission and absorption of beta rays. Acta radiol. (Stockh.) 43, 310–312 (1955).

    CAS  Google Scholar 

  • — Further approximate studies on beta ray absorption and transmission. Acta radiol. 48, 289–306 (1957).

    PubMed  CAS  Google Scholar 

  • — and E. Agren : Some further studies on beta-ray transmission. Acta radiol. (Stockh.) 51, 128–136 (1959).

    CAS  Google Scholar 

  • Osgood, E. E.: Treatment of the leukemias and polycythemia vera with radioactive phosphorus. In: Therapeutic use of artificial radioisotopes, chapt. 7, p. 102–127. New York: John Wiley & Sons 1956.

    Google Scholar 

  • Parmley, W. W., J. B. Jensen and C. W. Mays : Skeletal self-absorption of beta particle energy. In: Some aspects of internal irradiation, p. 437–453. New York: Pergamon Press 1962.

    Google Scholar 

  • Paters on, R., and H. M. Parker: A dosage system for γ-ray therapy. Brit. J. Radiol. 7, 592–632 (1934).

    Google Scholar 

  • — — A dosage system for interstitial radium therapy. Brit. J. Radiol. 11, 252–266, 313–340 (1938).

    Google Scholar 

  • — — and F. W. Spiers : A system of dosage for cylindrical distribution of radium. Brit. J. Radiol. 9, 487–508 (1936).

    Google Scholar 

  • Perry, W. E.: Standardisierung der Radioaktivität in National Physical Laboratory. Strahlentherapie 102, 370–378 (1957).

    PubMed  CAS  Google Scholar 

  • Phillips, A.F., and R.D. Saunders: Autoradiography and radioactivity measurements with human neoplasms containing radiophosphorus. Acta radiol. (Stockh.) 48, 101–112 (1957).

    CAS  Google Scholar 

  • Pochin, E. E., D. M. Myant and B. D. Corbett: Leukaemia following radioiodine treatment of hyperthyroidism. Brit. J. Radiol. 39, 31–35 (1956).

    Google Scholar 

  • Poddar, R. K.: Sensitivity of the photographic emulsions to beta spectra and its dependence on their average energy. Radiat. Res. 11, 498–508 (1959).

    PubMed  CAS  Google Scholar 

  • Quimby, E.H.: Dosimetry of internally administered radioactive isotopes. In: A Manual of artificial ladioisotope therapy, p. 46. New York: Academic Press 1951.

    Google Scholar 

  • — Dosage calculations in radium therapy, chapt. 16, p. 339–372 in Physical foundations of radiology, 2nd edit. New York: P. B. Hoeber 1952.

    Google Scholar 

  • — L. D. Marinelli and J. V. Blady: Secondary filters in radium therapy. Amer. J. Roentgenol. 41, 804–816 (1939).

    Google Scholar 

  • Robertson, J. S., and W. L. Hughes: Intranuclear irradiation with tritium-labeled thymidine. In: Proceedings of the First National Biophysics Conference (eds. Quastler and Morowitz), p. 278–283. New Haven: Yale University Press 1959.

    Google Scholar 

  • Roesch, W. C: Beta ray dose calculations, HW—51318 Rev. 1957.

    Google Scholar 

  • Rotblat, J., and G. Ward: Analysis of the radioactive content of tissues by α-track auto-radiography. Physics. bio. Med. 1, 57–70 (1956).

    CAS  Google Scholar 

  • Rowland, R. E., and J. H. Marshall: Radium in human bone: The dose in microscopic volumes of bone. Radiat. Res. 11, 299–313 (1959).

    PubMed  CAS  Google Scholar 

  • Schwebel, A., H. S. Isbell and J. V. Karabinos : A rapid method for the measurement of carbon 14 in formamide solution. Science 113, 465–466 (1951).

    PubMed  CAS  Google Scholar 

  • — — and J. D. Moyer: Determination of carbon-14 in solutions of 14C-labeled materials by means of a proportional counter. J. Res. nat. Bur. Stand. 53, 221–224 (1954).

    CAS  Google Scholar 

  • Seidlin, S. M., A. A. Yalow and E. Siegel: Blood radioiodine concentration and blood radiation dosage during 131I therapy for metastatic thyroid carcinoma. J. clin. Endocr. 12, 1197–1204 (1952).

    PubMed  CAS  Google Scholar 

  • — — — Blood radiation dose during radioiodine therapy of metastatic thyroid carcinoma. Radiology 63, 797–813 (1954).

    PubMed  CAS  Google Scholar 

  • Seliger, H. H.: The applications of standards of radioactivity. Int. J. appl. Radiat. 1, 215–232 (1956).

    PubMed  CAS  Google Scholar 

  • —, and A. Schwebel: Standardization of beta-emitting nuclides. Nucleonics 12(7), 54–63 (1954).

    CAS  Google Scholar 

  • Sievert, R. M.: Die Intensitätsverteilung der primären γ-Strahlung in der Nähe medizinischer Radiumpräparate. Acta radiol. (Stockh.) 1, 89–128 (1921).

    Google Scholar 

  • — Die γ-Strahlung-Intensität an der Oberfläche und in der nächsten Umgebung von Radium-nadeln. Acta radiol. (Stockh.) 11, 249–267 (1930).

    Google Scholar 

  • Sinclair, W. K.: Standardization of x-ray beams and radioactive isotopes. In: Radiation dosimetry, edit. Hine and Brownell, chapt. 11, p. 505–529. New York: Academic Press 1956.

    Google Scholar 

  • Sinclair, W. K., J. D. Abbatt, H. E. A. Farran, E.B.Harriss and L.F.LAMERTON: A quantitative autoradiographic study of radioiodine distribution and dosage in human thyroid glands. Brit. J. Radiol. 29, 36–41 (1956).

    PubMed  CAS  Google Scholar 

  • — N. G. Trott, and E. H. Belcher: The measurement of radioactive samples for clinical use. Brit. J. Radiol. 22, 565–575 (1954).

    Google Scholar 

  • Slack, L., and Way, K,: Radiations from radioactive atoms in frequentuse USAEC (1959) Washington, DC.

    Google Scholar 

  • Sommermeyer, K.: Dosage measurement of the beta radiation of radioactive isotopes in homo genous substances. Z. Physik. 133, 201–208 (1952).

    CAS  Google Scholar 

  • — Die Dosimetrie der β-Strahlung radioaktiver Isotope in luftäquivalenten Substanzen. Strahlentherapie 95, 302–311 (1954).

    PubMed  CAS  Google Scholar 

  • — and H. Opitz: Die Dosimetrie der β-Strahlen in Strahlenschutz. Sonderdruck aus Atom-kernenergie 10, 404–408 (1959).

    Google Scholar 

  • — and K. H. Waechter: Die Absorptions-koeffizienten der β-Energie radioaktiver Isotope für luftäquivalente Substanzen. Z. angew. Physik 5, 242–248 (1953).

    CAS  Google Scholar 

  • Spencer, L. V.: Theory of electron penetration. Physical. Rev. 98, 1597–1615 (1955).

    CAS  Google Scholar 

  • — Energy dissipation by fast electrons. Nat. Bur. Standards Monograph 1, Sept. 10, 1959.

    Google Scholar 

  • Spiers, F. W.: The influence of energy absorption and electron range on dosage in irradiated bone. Brit. J. Radiol. 22, 521–533 (1949).

    PubMed  CAS  Google Scholar 

  • — Dosage in irradiated soft tissue and bone. Brit. J. Radiol. 24, 365–369 (1951).

    PubMed  CAS  Google Scholar 

  • — Alpha-ray dosage in bone containing radium. Brit. J. Radiol. 26, 296–301 (1953).

    PubMed  CAS  Google Scholar 

  • Tochilin, E., B.W. Shumway, and G. D. Kohler: Response of photographic emulsions to charged particles and neutrons. Radiat. Res. 4, 467–482 (1956).

    CAS  Google Scholar 

  • Trucco, E.: Self-absorption in spheres and cylinders of radioactive material. Bull. Math. Biophys. 26, 303–325 (1964).

    PubMed  CAS  Google Scholar 

  • Trunnell, J. B., B. J. Duffy, J. T. Godwin, W. Peacock, L. Kirschner, and R. Hill: The distribution of radioactive iodine in human tissues: Necropsy study in nine patients. J. clin. Endocr. 10, 1007–1021 (1950).

    PubMed  CAS  Google Scholar 

  • Weijer, D. L., H. E. Duggan and D. B. Scott: Total body radiation and radiation to the blood from radioactive phosphorus. J. Canad. Ass. Radiol. 13, 117–122 (1962).

    PubMed  CAS  Google Scholar 

  • Whitehouse, W. J., and J.L.Putman: Detection and measurement of the separate particles. In: Radioactive isotopes, chapt. 5, p. 153–225. Oxford: Clarendon Press 1953.

    Google Scholar 

  • Wilson, C. W.: Radium therapy: Its physical aspects. London: Chapman & Hall 1945.

    Google Scholar 

  • Zirkle, R. E.: The radiobiological importance of the energy distribution along ionization tracks. J. cell. comp. Physiol. 16, 221–235 (1940).

    CAS  Google Scholar 

  • — The radiobiological importance of linear energy transfer. In: Radiation biology, vol.1, part I. New York: McGraw-Hill 1954.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marinelli, L.D. (1971). Dosimetry. In: Vieten, H., Wachsmann, F. (eds) Allgemeine Strahlentherapeutische Methodik / Methods and Procedures of Radiation Therapy. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 16 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80605-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80605-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80606-3

  • Online ISBN: 978-3-642-80605-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics