Advertisement

Strahlentherapie unter Verwendung hyperbaren Sauerstoffs

  • K.-H. Kärcher
Chapter
  • 11 Downloads

Zusammenfassung

Bereits 1878 beschrieb Paul Bert in seiner klassischen Arbeit „La Pression barometrique, Paris 1878“ die doppelte Rolle des Sauerstoffs: Einerseits kann er bei normalem Druck und normaler Konzentration Leben erhalten, andererseits wirkt er in Hochkonzentration bei hohen Drucken giftig und kann zum Tode führen. Bert beschrieb schon damals die gestörten metabolischen Prozesse, wie Verminderung der organischen Verbrennungen, Produktion von CO2 und Abbau des Zuckers im Blut, als deren Resultat zuletzt die Temperatur abfällt. Unter dem Eindruck dieser Befunde entstand eine ausgedehnte Zahl von Mitteilungen über die Sauerstoffvergiftung. Luftfahrt und Tiefseeforschung sowie die medizinische Anwendung brachten es mit sich, daß die physiologische Forschung sich intensiv mit dem Krankheitsbild der Sauerstoffvergiftung, der Caissonkrankheit, befaßte. Die Ergebnisse sind von Stadie, Riggs u. Haugaard sehr ausführlich dargestellt und zusammengefaßt worden. Es werden hierbei vor allem die Symptomatologie der auftretenden Störungen und ihre Ursachen am respiratorischen, cardiovasculären sowie am Nervensystem besprochen. Bevor wir auf die Begründung der Anwendung hyperbaren Sauerstoffs in der Strahlentherapie eingehen können, sind daher einige grundlegende Bemerkungen zur Physiologie und Pathophysiologie der Sauerstoffwirkung unter Überdruckbedingungen sowie zum Sauerstoffeffekt in der Radiobiologie erforderlich.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alper, T.: Comparison between the oxygen enhancement ratio for neutrons and x-rays as observed with Escherchia coli B. B.it. J. Radiol. 36, (1963).Google Scholar
  2. Barendsen, G. W.: Possibilities for the application of fast neutrons in radiotherapy: Recovery and oxygen enhancement of radiation induced damage in relation to linear energy transfer. Europ. J. Cancer 2, 333–345. Pergamon Press 1966.Google Scholar
  3. Bean, J. W., Haldi, J.: Alterations in blood lactic acid as a result of exposure to high oxygen pressure. Amer. J. Physiol. 102, 439–447 (1932).Google Scholar
  4. Behschad, H.: Wirkung ionisierender Strahlen auf Walker-Tumoren bei verschiedenen Sauerstoffdrucken ( Lactatdehydrogenase-und Lactatbestimmung im Serum ). Dissertation Heidelberg 1967.Google Scholar
  5. Bert, P.: Barometric Pressure, Researches in experimental physiology. Paris, 1878. Translated by M. A. Hitchcock & F. A. Hitchcock. Columbus: College Book Co. 1943.Google Scholar
  6. Bittner, R.: Überlebenskurven und histologische Untersuchungen an Ratten nach Ganzkörperbestrahlung bei verschiedenen Sauerstoffpartialdrucken. Dissertation Heidelberg 1967.Google Scholar
  7. Cade, I. S., McEwen, J. B.: Megavoltage radiotherapy in hyperbaric oxygen: a controlled trial. Cancer (Philad.) 20, 817–821 (1967).CrossRefGoogle Scholar
  8. Cater, D. B., Silver, I. A., Wilson, G. M.: Apparatus and technique for the quantitative measurement of oxygen tension in living tissues. Proc. Roy. Soc. B. 151, 56 (1959)CrossRefGoogle Scholar
  9. Cater, D. B., Silver, I. A., Wilson, G. M.: Quantitative measurements of oxygen tension in normal tissue and in the tumours of patients before and after radiotherapy. Acta Radiol. 53, 233–256 (1960).PubMedCrossRefGoogle Scholar
  10. Churchill-Davidson, I.: Oxygen effect in radiotherapy. In: Raven, R. W., Cancer progress 164 179. London: Butterworth 1960.Google Scholar
  11. Churchill-Davidson, I.: Oxygen effect on radiosensitivity. Procceedings: Conference on Research on the radiotherapy of cancer. Amer. Cancer Society, Inc., 122–139 (1961).Google Scholar
  12. Churchill-Davidson, I.: The oxygen effect in radiotherapy. Proc. Roy. Soc. Med. 57, 635–638 (1964a).PubMedGoogle Scholar
  13. Churchill-Davidson, I.: High-pressure oxygen and radiotherapy. Anglo-German med. Rev. 2, 519–523 (1964b).Google Scholar
  14. Churchill-Davidson, I.:, W. H. and Meijne, N. G.: Clinical application of hyperbaric oxygen, 140–143. Amsterdam: Elsevier (1964c).Google Scholar
  15. Churchill-Davidson, I.: The small patient chamber, radiotherapy. Trans-N. Y. Acad. Sci. 117, 875–882 (1965).Google Scholar
  16. Churchill-Davidson, I.: The oxygen effect in mammals. Schweiz, Krebstagung, Genf 1965. Oncologia 20 (Suppl.), 18–29 (1966).CrossRefGoogle Scholar
  17. Foster, C. A., Wiernik, S., Collins, C. D., Pizey, N. C. D., Skeggs, D. B. L., Purser, P. R.: The place of oxygen in radiotherapy. Brit. J. Radiol. 39, 321–331 (1966b).PubMedCrossRefGoogle Scholar
  18. Churchill-Davidson, I., Sanger, C., Thomlinson, R. H.: High-pressure oxygen and radiotherapy. Lancet 1, 1091–1095 (1955).CrossRefGoogle Scholar
  19. Churchill-Davidson, I.: Oxygenation in radiotherapy: clinical application. Brit. J. Radiol. 30, 406–422, (1957).PubMedCrossRefGoogle Scholar
  20. Datta, L. P.: The effect of ionising radiations on the blood vessels of man. (A histological, histochemical and 35-S sulphate autoradiographic study). Indian J. Radiol. 21, 206–210 (1967).Google Scholar
  21. Derrick, J. P., Russel, D.: Oxygen tensions in tissues. Arch. Surg. 88, 1059–1062 (1964). Deschner, E. E., Gray, L. H.: Influence of oxygen tension on x-ray induced chromosomal damage in Ehrlich ascites tumour cells irradiated in vitro and in vivo. Rad. Res. 11, 155 (1959).Google Scholar
  22. Detrick, L. E., Latta, H., Upham, H., McCandless, R.: Electron-microscopic changes across irradiated rat intestinal villi. Radiat. Res. 19, (1963).Google Scholar
  23. Dettmer, C. M., Kramer, S., Gottlieb, S. F., Aponte, G. E., Driscoll, D. H.: The effect of increased oxygen tensions upon animal tumour growth. Amer. J. Roentgenol. 102, 804–810 (1968).PubMedGoogle Scholar
  24. Dickens, F.: The toxic effects of oxygen on nervous tissue. In: Neurochemistry. K. A. C. Elliott, I. H. Page & J. H. Quastel, Eds. 2nd edit.: 851. Springfield: Charles C. Thomas.Google Scholar
  25. Dittrich, W., Stuhlmann, H.: Wachstumshemmung des Ehrlich-Karzinom der Maus in vivo durch Röntgenbestrahlung unter verschiedenen Sauerstoffpartialdrucken. Naturwissensch. 41, 122 (1954).CrossRefGoogle Scholar
  26. Dixon, M., Maynard, J. M., Morrow, P. F. W.: A new type of autoxidation reaction. Cause of instability of cytochrome c reductase. Nature (London) 186, 1033–1034 (1960).CrossRefGoogle Scholar
  27. Du Sault, L. A.: The effect of oxygen on the response of spontaneous tumours in mice to radiotherapy. Brit. J. Radiol. 36, 749–754 (1963).CrossRefGoogle Scholar
  28. Du Sault, L. A., Eyler, W. R., Dobben, G. D.: Combination of oxygen and optimum fractionation in radiation therapy of adenocarcinoma. Amer. J. Roentgenol. 82, 688–692 (1969).Google Scholar
  29. Elkind, M. M., Sutton, H.: X-ray damage and recovery in mammalian cells grown in culture. Nature 184, 1293–1295 (1959).PubMedCrossRefGoogle Scholar
  30. Emery, E. W., Lucas, B. G. B.: The irradiation of conscious patients under high oxygen pressure. Brit. J. Radiol. 37, 475 (1964).PubMedCrossRefGoogle Scholar
  31. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., Scott, A. A. C.: The concentration of oxygen dissolved in tissues at the thime of irradiation as a factor in radiotherapy. Brit. J. Radiol. 26, 638 (1953).PubMedCrossRefGoogle Scholar
  32. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., Scott, A. A. C., Chase, H. B., Deschner, E. E., Hunt, J. W., Scott, O. C. H.: Influence of oxygen and peroxide on response of mammalian cells and tissues to ionizating radiation. In: Proceedings of second United Nations International Conference on peaceful uses of atomic energy. Vol. 12, New York: Columbia Univ. Press 1958.Google Scholar
  33. Gray, L. H., Deschner, E. E.: Influence of oxygen tension on X-ray induced chromosomal damage in Ehrlich ascites tumour cells irradiated in vitro and in vivo. Radiation Res. 11, 115–146 (1959).PubMedCrossRefGoogle Scholar
  34. Grüssner, G., Wieland, H.: Experimentelle Untersuchungen über den Effekt von einzeitigen und fraktionierten Röntgenbestrahlungen auf das subkutane Walker-Karzinom der Ratte unter Beatmung mit verschiedenen hohen Sauerstoffpartialdrucken. Strahlentherapie 100, 241–252 (1956).PubMedGoogle Scholar
  35. Hansen, T. H.: Die Veränderungen des Gehaltes der sauren Mukopolysaccharide im Knorpelgewebe nach Einwirkung ionisierender Strahlen unter hyperbarem Sauerstoff. Dissertation Heidelberg 1968.Google Scholar
  36. Haugaard, N.: Poisoning of cellular reactions by oxygen. Ann. New York Acad. Scie. 117, 737–744 (1965).Google Scholar
  37. Haugaard, N., Hess, M. E., Itskovitz, H.: The toxic action of oxygen on glucose and pyruvate oxidation in heart homogenates. J. Physiol. Chem. 227, 605–616 (1957).Google Scholar
  38. Hewitt, H. B.: The effect on cell survival of inhalation of oxygen under high pressure during irradiation in vivo of a solid mouse sarcoma. Brit. J. Radiol. 36, 12 (1966).Google Scholar
  39. Hewitt, H. B., Wilson, C. W.: Effect of tissue oxygen tension on radiosensitivity of leukaemic cells irradiated in situ in livers of leukaemic mice. Brit. J. Cancer 13, 675–684 (1959).PubMedCrossRefGoogle Scholar
  40. Holthusen, H.: Beiträge zur Biologie der Strahlenwirkung. Untersuchungen an Askariden-eiern. Pflügers Arch. ges. Physiol. 187, 1 (1921).Google Scholar
  41. Howard-Flanders, P.: The role of oxygen in modifying the radiosensitivity of E. Coli B. Nature (London) 178, 978–979 (1956).Google Scholar
  42. Inch, W. R., McCredie, J. A., Kruuv, J.: Effect of breathing 5% carbon dioxide and 95% oxygen at atmospheric pressure on tumour radiocurability. Acta Radiologica 4, 17–25 (1966).CrossRefGoogle Scholar
  43. Johnson, R. E., Cooperman, L. H., Steckel, R. J.: Clinical method for evaluation of radio-potentiation with oxygen inhalation: A preliminary note. Radiology 87, 128–129 (1966).PubMedGoogle Scholar
  44. Johnson, R. J. R.: Gynecological cancer treated with cobalt under hyperbaric conditions. Front. Radiation Ther. One. 1, 149–155 (1968).Google Scholar
  45. Johnson, R. J. R., Legal, J.: Radiation beam alignment davice for use with a hyperbaric oxygen chamber. Brit. J. Radiol. 39, 558 (1966).PubMedCrossRefGoogle Scholar
  46. Kärcher, K. H., Kuttig, H.: Die Heidelberger Kammer zur Strahlentherapie bei Sauerstoffüberdruck. Strahlentherapie 133, 1–6 (1967).PubMedGoogle Scholar
  47. Kärcher, K. H., Kuttig, H., Becker, J., Morita, K.: Erste klinische und biologische Beobachtungen während der Strahlentherapie unter Sauerstoffüberdruck. Strahlentherapie 134, 4, 482–492 (1967).PubMedGoogle Scholar
  48. Kluft, O., Boerema, I.: Hyperbaric oxygen in experimental cancer in mice. In: Clinical application hyperbaric oxygen: I. Boerema., W. H. Brummelkamp and N. G. Meijne, eds. pp. 126–136. Amsterdam: Elsevier 1964.Google Scholar
  49. Kruuv, J. A., Inch, W. R., McCredie, J. A.: Blood flow and oxygenation of tumours in mice I. Effect of breathing gases containing carbon dioxide at atmospheric pressure. Cancer 19, 51–59 (1966a).CrossRefGoogle Scholar
  50. Kruuv, J. A., Inch, W. R., McCredie, J. A.: Blood flow and oxygenation of tumours in mice — III. Effects of breathing amyl nitrite on radiosensitivity of the C3H tumour. Cancer 19, 66–70 (1966b).Google Scholar
  51. Kruuv, J. A., Inch, W. R., McCredie, J. A.: Blood flow and oxygenation of tumours in mice. Cancer 20, 60–65 (1967).PubMedCrossRefGoogle Scholar
  52. Lacassagne, A.: Chute de la sensibilité aux rayons X chez la souris nouveau-née en état d’asphyxie. Compt. rend. Acad. sc. 215, 231–232 (1942).Google Scholar
  53. McCredie, J. A., Inch, W. R., Kruuv, J., Watson, T. A.: Effects of hyperbaric oxygen on growth and metastases on the C3HBA tumour in the mouse. Cancer (Philad.) 19, 1537–1542 (1966).CrossRefGoogle Scholar
  54. Meurk, M. L., Edelsack, E. A.: Lithium fluoride dosimetry under hyperbaric conditions Front. Front. Radiation Ther. One. 1, 98–109 (1968).Google Scholar
  55. Nolte, H.: Histologische Aspekte zum Problem der Sauerstoffintoxikation. Ueberleben auf See. 2. Marinemedizinisch-wissenschaftliches Symposium, Kiel, 1968. Hrsg. vom Schifffahrtsmedizinischen Institut der Marine.Google Scholar
  56. Orzechowski, G.: Neuere Erkenntnisse in der Physiopathologie der Sauerstoffvergiftung. In: Überleben auf See. II. Marinemedizinisch-wissenschaftliches Symposium in Kiel, Mai 1968. Hrsg.: Schiffahrtsmedizinisches Institut der Marine.Google Scholar
  57. Parker, R. G., Wootton, P.: Single dose erythemas of skin in hyperbaric radiation. Radiol. clin. (Basel) 36, 24–26 (1967a).Google Scholar
  58. Parker, R. G., Wootton, P.: Human skin response to radiation therapy with high-pressure oxygen at 30 P.S.I.G. Amer. J. Roentgenol. 100, 920–923 (1967b).Google Scholar
  59. Peracchia, G., Bini, F.: Osservazioni cliniche sull’irradiazione in camera iperbarica a 3 atmosfere di-ossigen. La Radiologia Medica 65, 991 (1967).Google Scholar
  60. Petzold, H., Fiedler, H.: Die Wirkung von Cholinchlorid auf den 02-Gehalt des arteriellen Blutes bei Lebererkrankungen. Dtsch. Z. Verdauungs-und Stoffwechselkrankheiten 26, 79–84 (1966).Google Scholar
  61. Plenk, H. P., Card, R. Y.: Hybaroxic radiation therapy. Review of two year experience with 167 patients. Amer. J. Roentgenol. 99, 900–914 (1967).PubMedGoogle Scholar
  62. Riebeling, M., Velazquez, J. G.: La camara oxihiperbarica asociada al telecobalte en el tratamiento del cancer regionalmente avanzado. Acta oncol. (Madrid) 5, 236–244 (1966).Google Scholar
  63. Rost, A.: Die Dosisverteilung im Wasserphantom innerhalb einer Sauerstoffüberdruck-kammer bei Bestrahlung mit hochenergetischen Bremsstrahlen. Dissertation Heidelberg 1967.Google Scholar
  64. Rubin, P.: Atmospheric versus hyperbaric oxygen breathing in radiotherapy. Front. Radiation Ther. One. 1, 46–70 (1968).Google Scholar
  65. Rubin, P., Casaretti, G.: Microcirculation of tumors. Part. II. The supervascularized state of irradiated regressing tumors. Clin. Radiol. 17, 346–355 (1966).PubMedCrossRefGoogle Scholar
  66. Seaman, W. B., Taplex, N. V., Sanger, C., Jacox, H. W., Atkins, H. L.: Combined high-pressure oxygen and radiation therapy in treatment of human cancer. Amer. J. Roentgenol. 85, 816–821 (1961).PubMedGoogle Scholar
  67. Suit, H. D.: Application of radiobiologie principles to radiation therapy. Cancer (Philad.) 22, 809–815 (1968).CrossRefGoogle Scholar
  68. Suit, H. D., Maeda, M.: Oxygen effect factor and tumour volume in C3H mouse mammary carcinoma: Preliminary report. Amer. J. Roentgenol. 96, 177–182 (1966).PubMedGoogle Scholar
  69. Suit, H. D., Lindberg, R.: Radiation therapy administered under conditions of tourniquet-induced local tissue hypoxia. Amer. J. Roentgenol. 102, 27–37 (1968).PubMedGoogle Scholar
  70. Schwarz, G.: Über Desensibilisierung gegen Röntgen-und Radiumstrahlen. Munch. Med Wschr. 56, 1217 (1909).Google Scholar
  71. Stadie, W. C., Haugaard, N.: The effect of high oxygen pressure upon enzymes: VII. Urinase, xanthine oxidase and d-amino acid oxidase. J. Biol. Chem. 161, 181–188 (1945).PubMedGoogle Scholar
  72. Stadie, W. C., Haugaard, N., Riggs, B. C., Haugaard, N.: Oxygen poisoning. Amer. J. Med. 207, 84 (1944).CrossRefGoogle Scholar
  73. Stadie, W. C., Haugaard, N.: Oxygen poisoning. V. The effect of high oxygen pressure upon enzymes: succinic dehydrogenase and cytochrome oxidase. J. Biol. Chem. 161, 153 (1945a).Google Scholar
  74. Stadie, W. C., Haugaard, N.: The effect of high oxygen pressure upon enzymes: VI. Pepsin, catalase, cholinesterase and carbonic anhydrase. J. Biol. Chem. 161, 175–180 (1945b).PubMedGoogle Scholar
  75. Stadie, W. C., Haugaard, N.: The effect of high oxygen pressure on enzymes: VIII. the system synthetizing acetylcholine. N. Bil. Chem. 161, 189–196 (1945c).Google Scholar
  76. Thomlinson, R. H.: An experimental method for comparing treatments in intact malignant tumours in animals and its applications to the use of oxygen in radiotherapy. Brit. J. Cancer 14, 555 (1960).PubMedCrossRefGoogle Scholar
  77. Thomlinson, R. H.: The oxygen effect in mammals. In: Brookhaven Symp. Biol. 14, 204–219 (1961).Google Scholar
  78. Thomlinson, R. H.: The therapeutic experiments with the fast neutron beam from the Medical Research Council cyclotron; III. A comparison of fast neutrons and x-rays in relation to the „oxygen effect“ in experimental tumours in rats. Brit. J. Radiol. 36, 89–91 (1963).CrossRefGoogle Scholar
  79. Thomlinson, R. H., Chin, B.: A comparison of fast neutron and x-rays in relation to the „oxygen effect“ in experimental tumours in rats. Brit J. Radiol. 35, 89–91 (1963).Google Scholar
  80. Ulrich, E.: Enzymatische und fermenthistochemische Untersuchungen nach Ganzkörperbestrahlung von Ratten unter verschiedenen Sauerstoffpartialdrucken. Dissertation Heidelberg 1966.Google Scholar
  81. Umegaki, Y., Matsuzawa, T.: Deoxygenation radiotherapy. Nippon Acta Radiol. 22, 79–85 (1963).Google Scholar
  82. Vacek, A.: Whole-body oxygen consumption during irradiation for the survival of rats after exposure to x-rays. Nature (London) 194 (1962).Google Scholar
  83. Vacek, A., Davidova, E., Hoéek, B.: Tension of oxygen in tissues and its changes during irradiation. Int. J. Rad. Biol. 8, 499–505 (1964).CrossRefGoogle Scholar
  84. Van den Brenk, H. A. S.: Hyperbaric oxygen in radiation therapy. Am. J. Roentgenol. 102, 8–26 (1968).Google Scholar
  85. Elliott, K., Hutchings, H.: Effect of single and fractionated doses of x-rays on radio-curability of solid Ehrlich tumour and tissue reactions in vivo, for different oxygen tension. Brit. J. Cancer 16, 518–534 (1962).PubMedCrossRefGoogle Scholar
  86. Kerr, R. C., Madigan, J. P., Cass, N. M., Richter, W.: Results from tourniquet anoxia and hyperbaric oxygen techniques combined with megavoltage treatment of sarcomas of bone and soft tissues. Amer. J. Roentgenol. 96, 760–776 (1966).PubMedGoogle Scholar
  87. Richter, W., Murley, R. H.: Radiosensivity of the human oxygenated cervical spinal cord based on analysis of 357 cases receiving 4 MeV x-rays in hyperbaric oxygen. Br. J. Radiol. 41, 205–214 (1968).PubMedCrossRefGoogle Scholar
  88. Van Putten, L. M., Kallman, R. F.: Effect of pre-irradiation on the ratio of oxygenated and anoxic cells in a transplanted mouse tumour. Front. Radiation Ther. One. 1, 27–37 (1968a).Google Scholar
  89. Van Putten, L. M., Kallman, R. F.: Oxygenation status of a transplantable tumour during fractionated radiation therapy. J. nat. Cancer Inst. 40, 441–451 (1968b).PubMedGoogle Scholar
  90. Wandel, A.: Hyperbare Oxydation (Sauerstoffiiberdruckbehandlung). Aus dem Schiffahrtsmedizinischen Institut der Marine. Wehrdienst und Gesundheit Bd. XVI. Darmstadt: Wehr und Wissen Verlagsgesellschaft mbH 1938.Google Scholar
  91. Warburg, O., Schroder, W., Gewitz, H.: Volker, W.: Selective action of x-rays on cancer cells. Naturwissenschaften 45, 192 (1958).CrossRefGoogle Scholar
  92. Wildermuth, O.: Clinical exploration into value of hyperbaric oxygen with radiotherapy of cancer. Proc. of Third International Congress on Hyperbaric Medicine. Ed. by I. W. Brown and B. G. Cox. Acad. Sci. Public. 1404. Washington, D. C., 1966, pp. 676–685.Google Scholar
  93. Wildermuth, O.: Hybaroxic radiotherapy: some observations in the development of clinical application and technique. Amer. J. Roentgenol 96, 171–176 (1966b).PubMedGoogle Scholar
  94. Wildermuth, O.: Problems in the management of patients with hybaroxic radiotherapy. Front. Radiation Ther. Onc. 1, 127–133 (1968).Google Scholar
  95. Williams, K. G.: High pressure oxygen in medicine. Advancement of Science 47 (1965). Wootton, P.: Physical characteristics of a one-man hyperbaric oxygen chamber. Front. Radiation Ther. Onc. 1, 71–78 (1968).Google Scholar
  96. Wright, E. A., Hahn, G. M., Steele, R. E.: Towards the ideal use of the „oxygen effect“in radiotherapy. Amer. J. Roentgenol. 96, 749–754 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1970

Authors and Affiliations

  • K.-H. Kärcher
    • 1
  1. 1.Vorstand der Strahlentherapeutischen Klinik und des Instituts für klinische StrahlenbiologieUniversität WienDeutschland

Personalised recommendations