Skip to main content

The Optimum Form of Dietary Nitrogen in Gastrointestinal Disease: Proteins, Peptides or Amino Acids?

  • Conference paper
Wahl der Nahrungsproteine—Grundlagen und Diätetik
  • 16 Accesses

Abstract

At one time it was thought that proteins had to be hydrolysed to free amino acids before absorption but this hypothesis was finally overturned in the 1960’s and it is now clear that peptide absorption in the gastrointestinal tract is of major nutritional significance. The products of luminal hydrolysis (free amino acids and small peptides) can be absorbed either as free amino acids—by four group specific amino acid transport systems, or as intact di— and tripeptides—by a separate transport system. Tetra— and higher peptides require brush border hydrolysis and the products are absorbed either as free amino acids or as di— and tripeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison J, Burston D, Matthews DM (1972) Evidence for active transport of the dipeptide gly-cylsarcosine by hamster jejunum in vitro. Clin Sci 43:907–911

    PubMed  CAS  Google Scholar 

  • Addison JM, Matthews DM, Burston D (1974) Competition between carnosine and other peptides for transport by hamster jejunum in vitro. Clin Sci Mol Med 46:707–714

    PubMed  CAS  Google Scholar 

  • Addison JM, Burston D, Payne JW, Wilkinson S, Matthews DM (1975a) Evidence for active transport of tripeptides by hamster jejunum in vitro. Clin Sci Mol Med 49:305–312

    PubMed  CAS  Google Scholar 

  • Addison JM, Burston D, Dalrymple JA, Matthews DM, Payne JW, Sleisinger MH, Wilkinson S (1975b) A common mechanism for transport of di— and tripeptides by hamster jejunum in vitro. Clin Sci Mol Med 49:313–322

    PubMed  CAS  Google Scholar 

  • Adibi SA (1969) The influence of molecular structure of neutral amino acids on their absorption in the jejunum and ileum of human intestine in vivo. Gastroenterology 56:903–913

    PubMed  CAS  Google Scholar 

  • Adibi SA (1970) Leucine absorption rate and net movements of sodium and water in human jejunum. J Appl Physiol 28:753–757

    PubMed  CAS  Google Scholar 

  • Adibi SA (1971) Intestinal transport of dipeptides in man: Relative importance of hydrolysis and intact absorption. J Clin Invest 50:2266–2275

    Article  PubMed  CAS  Google Scholar 

  • Adibi SA (1976) Intestinal phase of protein assimilation in man. Am J Clin Nutr 29:205–215

    PubMed  CAS  Google Scholar 

  • Adibi SA, Gray SJ (1967) Intestinal absorption of essential amino acids in man. Gastroenterology 52:837–845

    PubMed  CAS  Google Scholar 

  • Adibi SA, Mercer DW (1973) Protein digestion in human intestine as reflected in human mucosal and plasma amino acid concentrations after meals. J Clin Invest 52:1586–1594

    Article  PubMed  CAS  Google Scholar 

  • Adibi SA, Soleimanpur MR (1974) Functional characterisation of the dipeptide transport system in human jejunum. J Clin Invest 53:1368–1374

    Article  PubMed  CAS  Google Scholar 

  • Adibi SA, Morse EL (1977) The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum. J Clin Invest 60:1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Adibi SA, Gray SJ, Menden E (1967) The kinetics of ammo acid absorption and alteration of plasma composition of free amino acids after intestinal perfusion of amino acid mixtures. Am J Clin Nutr 20:24–33

    PubMed  CAS  Google Scholar 

  • Adibi SA, Morse EL, Masilamani SS, Amin PF (1975) Triglycine absorption in human intestine: Evidence for a common carrier for dipeptide and tripeptide transport. J Clin Invest 56:1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Agar WT, Hird FJ, Sidhu GS (1954) The uptake of amino acids by the intestine. Biochim Biophys Acta 14:80–84

    Article  PubMed  CAS  Google Scholar 

  • Asatoor AM, Bandhoh JK, Lant AF, Mime MD, Navab F (1970a) Intestinal absorption of carnosine and its constituent amino acids in man. Gut 11:250–254

    Article  PubMed  CAS  Google Scholar 

  • Asatoor AM, Cheng B, Edwards KDG, Lant AF, Matthews DM, Mime MD, Navab F, Richards AJ (1970b) Intestinal absorption of two dipeptides in Hartnup disease. Gut 11:380–387

    Article  PubMed  CAS  Google Scholar 

  • Asatoor AM, Harrison BDW, Mime MD, Prosser DI (1972) Intestinal absorption of an arginine-containing peptide in cystinuria. Gut 13:95–98

    Article  PubMed  CAS  Google Scholar 

  • Borgstrom B, Dahlqvist A, Lundh G, Sjovall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36:1521–1536

    Article  PubMed  CAS  Google Scholar 

  • Boyd CAR, Ward MR (1982) A micro-electrode study of oligopeptide absorption by the small intestinal epithelium of necturus maculosus. J Physiol (London) 324:411–428

    CAS  Google Scholar 

  • Burston D, Addison JM, Matthews DM (1972) Uptake of dipeptides containing basic and acidic amino acids by rat small intestine in vitro. Clin Sci 43:823–837

    PubMed  CAS  Google Scholar 

  • Burston D, Taylor E, Matthews DM (1979) Intestinal handling of two tetrapeptides by rodent small intestine. Biochim Biophys Acta 553:175–178

    Article  PubMed  CAS  Google Scholar 

  • Burston D, Taylor E, Matthews DM (1980) Kinetics of uptake of lysine and lysyllysine by hamster jejunum in vitro. Clin Sci 59:285–287

    PubMed  CAS  Google Scholar 

  • Burston D, Wapnir RA, Taylor E, Matthews DM (1982) Uptake of L-valyl-L-valine and glycyl-sarcosine by hamster jejunum in vitro. Clin Sci 62:617–626

    PubMed  CAS  Google Scholar 

  • Cheeseman CI, Johnston G (1982) Glycyl-L-leucine transport in the rat small intestine. Can J Physiol Pharmacol 60:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Chen ML, Rogers QR, Harper AE (1962) Observations on protein digestion in vivo. IV Further observation of the gastrointestinal contents of rats fed different dietary proteins. J Nutr 76:235–241

    PubMed  CAS  Google Scholar 

  • Chung YC, Kim YS, Shadchehr A, Garrido A, MacGregor IL, Sleisinger MH (1979a) Protein digestion and absorption in human small intestine. Gastroenterology 76:1415–1421

    PubMed  CAS  Google Scholar 

  • Chung YC, Silk DBA, Kim YS (1979b) Intestinal transport of a tetrapeptide, L-leucylglycylglycylglycine, in rat small intestine in vivo. Clin Sci 57:1–11

    PubMed  CAS  Google Scholar 

  • Cook GC (1973) Independent jejeunal mechanisms for glycine and glycylglycine transfer in man in vivo. Br J Nutr 30:13–19

    Article  PubMed  CAS  Google Scholar 

  • Coning T (1980) The adaptation of digestive enzymes to the diet: Its physiological significance. Reprod Nutr Develop 20:1217–1235

    Article  Google Scholar 

  • Craft IL, Geddes D, Hyde CW, Wise IJ, Matthews DM (1968) Absorption and malabsorption of glycine and glycine peptides in man. Gut 9:425–437

    Article  PubMed  CAS  Google Scholar 

  • Curtis KJ, Kim YS, Perdomo JM, Silk DBA, Whitehead JS (1978) Protein digestion and absorption in the rat. J Physiol 274:409–419

    PubMed  CAS  Google Scholar 

  • Das M, Radhakrishnan AN (1975) Studies on a wide-spectrum intestinal dipeptide uptake system in the monkey and in the human. Biochem J 146:133–139

    PubMed  CAS  Google Scholar 

  • Fairclough PD, Silk DBA, Clark ML, Dawson AM (1975) New evidence for intact di— and tripeptide absorption. Gut 16:843A

    Google Scholar 

  • Fairclough PD, Silk DBA, Clark ML, Matthews DM, Marrs TC, Burston D, Clegg KM (1977) Effect of glycylglycine on absorption from human jejunum of an amino acid mixture simulating casein and a partial enzymic hydrolysate of casein containing small peptides. Clin Sci Mol Med 53:27–33

    PubMed  CAS  Google Scholar 

  • Fariclough PD, Hegarty JE, Silk DBA, Clark ML (1980) A comparison of the absorption of two protein hydrolysates and their effects on water and electrolyte movements in the human jejunum. Gut 21:829–834

    Article  Google Scholar 

  • Fern EB, Garlick PJ, Waterlow JC (1985) Apparent compartmentation of body nitrogen in one human subject: its consequences in measuring the rate of whole-body protein synthesis with 15 N. Clin Sci 68:271–282

    PubMed  CAS  Google Scholar 

  • Freeman HJ, Kim YS (1978) Digestion and absorption of protein. Ann Rev Med 29:99–116

    Article  PubMed  CAS  Google Scholar 

  • Freeman HJ, Sleisinger MH, Kim YS (1983) Human protein digestion and absorption: Normal mechanisms and protein energy malnutrition. In: Sleisinger MH (ed) Clinics in Gastroenterology, vol 12, number 2. WB Saunders, London Philadelphia Toronto, pp 357–378

    Google Scholar 

  • Ganapathy V, Leibach FK (1983) Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. J Biol Chem 258:14189–14192

    PubMed  CAS  Google Scholar 

  • Ganapathy V, Leibach FK (1985) Is intestinal transport energised by a proton gradient? Am J Physiol 249: G153–G160

    PubMed  CAS  Google Scholar 

  • Ganapathy V, Radhakrishnan AN (1980) Sodium dependent inhibition of amino acid and dipeptide transport by harmaline in monkey small intestine. Biochem Pharmacol 29:713–716

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy V, Mendicino JF, Leibach FH (1981) Transport of glyeyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem 256:118–124

    PubMed  CAS  Google Scholar 

  • Ganapathy V, Burckhardt G, Leibach FK (1984) Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J Biol Chem 259:8954–8959

    PubMed  CAS  Google Scholar 

  • Gardner MLG (1975) Absorption of amino acids and peptides from a complex mixture in the isolated small intestine of the rat J Physiol (London) 253:233–256

    CAS  Google Scholar 

  • Gardner MLG (1978) Amino acid and peptide absorption from partial digests of proteins in isolated rat small intestine. J Physiol (London) 284:83–104

    CAS  Google Scholar 

  • Gardner MLG (1983) Evidence for, and implications of, passage of intact peptides across the intestinal mucosa. Biochem Soc Trans 11:810–813

    PubMed  CAS  Google Scholar 

  • Gardner MLG (1984) Intestinal assimilation of intact peptides and proteins from the diet—a neglected field. Biol Rev 59:289–331

    Article  PubMed  CAS  Google Scholar 

  • Gibson JA, Sladen GE, Dawson AM (1976) Protein absorption and ammonia production: The effects of dietary protein and removal of the colon. Br J Nutr 35:61–65

    Article  PubMed  CAS  Google Scholar 

  • Gray GM, Cooper HL (1971) Protein digestion and absorption. Gastroenterology 61:535–544

    PubMed  CAS  Google Scholar 

  • Grimble GK, Keohane PP, Higgins BE, Kaminski MV Jr, Silk DBA (1986 a to be published) Effect of peptide chain-length on amino acid absorption from two lactalbumin hydrolysates in the normal human jejeunum. Clin Sci—Grimble GK, Rees RG, Keohane PP, Cartwright T, Desreumaux M, Silk DBA (1986 b to be published) The effect of peptide chain-length on absorption of egg-protein hydrolysates in the normal human jejunum.

    Google Scholar 

  • Gastroenterology-Guandalini S, Rubino A (1982) Development of dipeptide transport in the intestinal mucosa of rabbits. Pediatr Res 16:99–103

    Google Scholar 

  • Hegarty JE, Fairclough PD, Moriarty KJ, Kelly MJ, Clark ML (1982) Effects of concentration on in vivo absorption of a peptide containing protein hydrolysate. Gut 23:304–309

    Article  PubMed  CAS  Google Scholar 

  • Hellier MD, Holdsworth CD, Perrett D, IMrumalai CD (1972a) Intestinal dipeptide transport in normal and cystinuric subjects. Clin Sci Mol Med 43:659–668

    CAS  Google Scholar 

  • Hellier MD, Holdsworth CD, McColl I, Perrett D (1972b) Dipeptide absorption in man. Gut 13:965–969

    Article  PubMed  CAS  Google Scholar 

  • Hellier MD, Holdsworth CD, Perrett D (1973) Dibasic amino acid absorption in man. Gastroenterology 65:613–618

    PubMed  CAS  Google Scholar 

  • Hermon-Taylor J, Perrin J, Grant DAW, Appleyard A, Bubel M, Magee AI (1977) Im-munofluorescent localisation of enterokinase in human small intestine. Gut 18:259–265

    Article  PubMed  CAS  Google Scholar 

  • Himukai M, Suzuki Y, Hoshi T (1978) Differences in characteristics between glycine and glycylglycine transport in guinea pig small intestine. Jpn J Physiol 28:499–510

    Article  PubMed  CAS  Google Scholar 

  • Himukai M, Kano-Kanayama A, Hoshi T (1982) Mechanisms of inhibition of glycylglycine transport by glycyl-L-leucine and L-leucine in guineapig small intestine. Biochim Biophys Acta 687:170–178

    Article  PubMed  CAS  Google Scholar 

  • Hueckel HJ, Rogers QR (1970) Urinary excretion of hydroxyproline-containing peptides in man, rat, hamster, dog and monkey after feeding gelatin. Comp Biochem Physiol 32:7–16

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Kishi T, Chibata I (1973) Comparative effects of casein and amino acid mixture simulating casein on growth and food intake in rats. J Nutr 103:1709–1715

    CAS  Google Scholar 

  • Johannson C (1975) Studies of gastrointestinal interactions: VII. Characteristics of the absorption pattern of sugar, fat and protein from composite meals in man: A quantitative study. Scand J Gastroenterol 10:33–42

    Google Scholar 

  • Josefsson L, Lindberg T (1967) Intestinal dipeptidases: IX. Studies on dipeptidases of human intestinal mucosa. Acta Chem Scand 21:1965–1966

    Article  PubMed  CAS  Google Scholar 

  • Keohane PP, Silk DBA (1983) Peptides and free amino acids. In: Rombeau JL (ed) Clinical Nutrition, vol I. WB Saunders, New York, pp 44–59

    Google Scholar 

  • Keohane PP, Grimble GK, Brown B, Spiller RC, Silk DBA (1985) Influence of protein composition and hydrolysis method on intestinal absorption of protein in man. Gut 26:907–913

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Birthwhistle W, Kim YW (1972) Peptide hydrolases in the brush border and soluble fractions of small intestinal mucosa of rat and man. J Clin Invest 51:1419–1430

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Kim YW, Sleisinger MH (1974) Studies on the properties of peptide hydrolases in the brush border and soluble fractions of small intestinal mucosa of rat and man. Biochim Biophys Acta 370:283–296

    PubMed  CAS  Google Scholar 

  • Kim YS, Borphy EJ, Nicholson JA (1976) Rat intestinal brush border membrane peptidases 2. Enzymatic properties, immunochemistry and interactions with lectins of two different forms of the enzyme. J Biol Chem 251:3206–3212

    CAS  Google Scholar 

  • Koretz RL, Meyer JH (1980) Elemental diets—Facts and fantasies. Gastroenterology 78:393–410

    PubMed  CAS  Google Scholar 

  • Lane AE, Silk DBA, Clark ML (1975) Absorption of two proline containing peptides by rat small intestine in vivo. J Physiol (London) 248:143–149

    CAS  Google Scholar 

  • Matthews DM (1971) Proteins: Protein absorption. J Clin Pathol 24 (Suppl 5):29–40

    Article  Google Scholar 

  • Matthews DM (1975) Intestinal absorption of peptides. Physiol Rev 55:537–608

    PubMed  CAS  Google Scholar 

  • Matthews DM (1983) Intestinal absorption of peptides. Biochem Soc Trans 11:808–810

    PubMed  CAS  Google Scholar 

  • Matthews DM (1984) Absorption of peptides, amino acids and their methylated derivatives. In: Stegink LD, Filer LJ Jr (eds) Aspartame: Physiology and Biochemistry. Marcel Dekker, New York Basel, pp 29–46

    Google Scholar 

  • Matthews DM, Adibi SA (1976) Peptide absorption. Gastroenterology 71:151–161

    CAS  Google Scholar 

  • Matthews DM, Payne JW (1980) Transmembrane transport of small peptides. Current Topics In Membranes and Transport, 14. Academic Press, New York, pp 331–425

    Google Scholar 

  • Matthews DM, Burston D (1983) Uptake of L-leucyl-L-leucine and glycylsarcosine by hamster jejunum in vitro. Clin Sci 65:177–184

    PubMed  CAS  Google Scholar 

  • Matthews DM, Burston D (1984) Uptake of a series of neutral dipeptides including L-alanyl-L-alanine, glycylglycine and glycylsarcosine by hamster jejunum in vitro. Clin Sci 67:541–549

    PubMed  CAS  Google Scholar 

  • Matthews DM, Addison JM, Burston D (1974) Evidence for active transport of the dipeptide carnosine (-alanyl-L-histidine) by hamster jejunum in vitro. Clin Sci Mol Med 46:693–705

    PubMed  CAS  Google Scholar 

  • Matthews DM, Gandy RH, Taylor E, Burston D (1979) Influx of two dipeptides, glycylsarcosine and L-glutamyl-L-glu-tamic acid, into hamster jejunum. Clin Sci 56:15–23

    PubMed  CAS  Google Scholar 

  • Miller PM, Burston D, Brueton MJ, Matthews DM (1984) Kinetics of uptake of L-leucine and glycylsarcosine into normal and protein malnourished young rat jejunum. Pediatr Res 18:504–508

    PubMed  CAS  Google Scholar 

  • Milne MD (1971) Disorders of intestinal amino acid transport. J Clin Pathol 24 (Suppl 5):41–44

    Article  Google Scholar 

  • Moriarty KJ, Hegarty JE, Fair-clough PD, Kelly MJ, Clark ML, Dawson AM (1985) Relative nutritional value of whole protein, hydrolysed protein and free amino acids in man. Gut 26:694–699

    Article  PubMed  CAS  Google Scholar 

  • Navab F, Asatoor AM (1970) Studies on intestinal absorption of amino acids and a dipeptide in a case of Hartnup disease. Gut 11:373–379

    Article  PubMed  CAS  Google Scholar 

  • Newey H, Smyth DH (1959) Hie intestinal absorption of some dipeptides. J Physiol (London) 145:48–56

    CAS  Google Scholar 

  • Newey H, Smyth DH (1960) Intracellular hydrolysis of dipeptides during intestinal absorption. J Physiol (London) 152:367–380

    CAS  Google Scholar 

  • Newey H, Smyth DH (1962) Cellular mechanisms in intestinal transfer of amino acids. J Physiol (London) 164:527–551

    CAS  Google Scholar 

  • Nicholson JA, Peters TJ (1978) Subcellular distribution of hydrolase activities for glycine and leucine homopep-tides in human jejunum. Clin Sci Mol Med 54:205–207

    PubMed  CAS  Google Scholar 

  • Nicholson JA, Peters TJ (1979) Subcellular localisation of peptidase activity in the human jejunum. Eur J Clin Invest 9:349–354

    Article  PubMed  CAS  Google Scholar 

  • Nixon SE, Mawer GE (1970a) The digestion and absorption of protein in man. 1. The site of absorption. Br J Nutr 24:227–240

    Article  PubMed  CAS  Google Scholar 

  • Nixon SE, Mawer GE (1970b) The digestion and absorption of protein in man. 2. The form in which digested protein is absorbed. Br J Nutr 24:241–258

    Article  PubMed  CAS  Google Scholar 

  • Peters TJ (1970) The subcellular localisation of di-and tripeptide hydrolase activity in guinea pig small intestine. Biochem J 120:195–203

    PubMed  CAS  Google Scholar 

  • Prockop DJ, Sjoerdsma A (1961) Significance of urinary hydroxyproline in man. J Clin Invest 40:843–849

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Keiser HR, Sjoerdsma A (1962) Gastrointestinal absorption and renal excretion of hydroxyproline peptides. Lancet ii: 527–528

    Article  Google Scholar 

  • Rajendran VM, Ansari SA, Harig JM, Adams MB, Khan AH, Ramaswamy K (1985) Transport of glycyl-L-proline by human intestinal brush border membrane vesicles. Gastroenterology 89:1298–1304

    PubMed  CAS  Google Scholar 

  • Rubino A, Field M, Schwachman H (1971) Intestinal transport of amino acid residues of dipeptides. I. Influx of the glycine residue of glycyl-L-proline across mucosal border. J Biol Chem 246:3542–3548

    PubMed  CAS  Google Scholar 

  • Schmitz J, Triadou N (1982) Digestion et absorption intestinales des peptides. Gastroenterol Clin Biol 6:651–661

    PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–672

    PubMed  CAS  Google Scholar 

  • Semeriva M, Varesi L, Gratecos D (1982) Studies on transport of amino acids from peptides by rat small intestine in vitro: Synthesis, properties and uptake of a photosensitive tetrapeptide. Eur J Biochem 122:619–626

    Article  PubMed  CAS  Google Scholar 

  • Silk DBA (1974) Progress Report: Pep-tide absorption in man. Gut 15:494–501

    Article  PubMed  CAS  Google Scholar 

  • Silk DBA (1977) Amino acid and peptide absorption in man. In: Peptide Transport and Hydrolysis. Ciba Foundation Symposium 50. Elsevier, Amsterdam Oxford New York, pp 15–29

    Google Scholar 

  • Silk DBA (1981) Peptide Transport. Clin Sci 60:607–615

    PubMed  CAS  Google Scholar 

  • Silk DBA, Kim YS (1976) Release of peptide hydrolases during incubation of intact intestinal segments in vitro. J Physiol (London) 258:489–497

    CAS  Google Scholar 

  • Silk DBA, Dawson AM (1979) Intestinal absorption of carbohydrate and protein in man. In: Crane RK (ed) International Review of Physiology. Gastrointestinal Physiology III, Vol 19. University Park Press, Baltimore, pp 151–204

    Google Scholar 

  • Silk DBA, Marrs TC, Addison JM, Burston D, Clark ML, Matthews DM (1973a) Absorption of amino acids from an amino acid mixture simulating casein and a tryptic hydrolysate of casein in man. Clin Sci Mol Med 45:715–719

    PubMed  CAS  Google Scholar 

  • Silk DBA, Perrett D, Clark ML (1973b) Intestinal transport of two dipeptides containing the same two neutral amino acids in man. Clin Sci Mol Med 45:291–299

    PubMed  CAS  Google Scholar 

  • Silk DBA, Perrett D, Stephens AD, Clark ML, Scowen EF (1974a) Intestinal absorption of cystine and cysteine in normal human subjects and patients with cystinuria. Clin Sci Mol Med 47:393–397

    PubMed  CAS  Google Scholar 

  • Silk DBA, Webb JPW, Lane AE, Clark ML, Dawson AM (1974b) Functional differentiation of human jejunum and ileum: A comparison of the handling of glucose, peptides and amino acids. Gut 15:444–449

    Article  PubMed  CAS  Google Scholar 

  • Silk DBA, Perrett D, Webb JPW, Clark ML (1974c) Absorption of two tripeptides by the human small intestine: A study using a perfusion technique. Clin Sci Mol Med 46:393–402

    PubMed  CAS  Google Scholar 

  • Silk DBA, Perrett D, Clark ML (1975a) Jejeunal and ileal absorption of dibasic amino acids and an arginine containing dipeptide in cystinuria. Gastroenterology 68:1426–1432

    PubMed  CAS  Google Scholar 

  • Silk DBA, Clark ML, Marrs TC, Addison JM, Burston D, Matthews DM, Clegg KM (1975b) Jejunal absorption of an amino acid mixture simulating casein and an enzymic hydrolysate of casein prepared for oral administration to normal adults. Br J Nutr 33:95–100

    Article  PubMed  CAS  Google Scholar 

  • Silk DBA, Nicholson JA, Kim YS (1976) Relationships between mucosal hydrolysis and transport of two phenylalanine dipeptides. Gut 17:870–876

    Article  PubMed  CAS  Google Scholar 

  • Silk DBA, Chung YC, Berger KL, Conley K, Sleisinger MH, Spiller GA, Kim YS (1979) Comparison of oral feeding of peptide and amino acid meals to normal human subjects. Gut 20:291–299

    Article  PubMed  CAS  Google Scholar 

  • Silk DBA, Fairclough PD, Clark ML, Hegarty JE, Marrs TC, Addison JM, Burston D, Clegg KM, Matthews DM (1980) Uses of a peptide rather than a free amino acid nitrogen source in chemically defined elemental diets. J Parent Ent Nutr 4:548–553

    Article  CAS  Google Scholar 

  • Sleisinger GE, Burston D, Dalrymple JA, Wilkinson S, Matthews DM (1976) Evidence for a single common carrier for uptake of a dipeptide and a tripeptide by hamster jejunum in vitro. Gastroenterology 71:76–81

    Google Scholar 

  • Smithson KW, Gray GM (1977) Intestinal assimilation of a tetrapeptide in the rat. Obligate function of brush-border membrane aminopeptidases. J Clin Invest 60:665–674

    Article  PubMed  CAS  Google Scholar 

  • Taylor E, Burston D, Matthews DM (1980) Influx of gly-cylsarcosine and L-lysyl-L-lysine into hamster jejunum in vitro. Clin Sci 58:221–225

    PubMed  CAS  Google Scholar 

  • Tobey N, Heizer W, Yeh R, Huang T-I, Hoffner C (1985) Human intestinal brush border peptidases. Gastroenterology 88:913–926

    PubMed  CAS  Google Scholar 

  • Trocki O, Mochizuki H, Dominioni L, Alexander JW (1986) Intact protein versus free amino acids in the nutritional support of thermally injured animals. J Parent Ent Nutr 10:139–145

    Article  CAS  Google Scholar 

  • Wellner D, Meister A (1979) A survey of inborn errors of amino acid metabolism and transport in man. Ann Rev Biochem 50:911–968

    Article  Google Scholar 

  • Whitecross DP, Armstrong C, Clark AD, Piper DW (1973) The pesinogens of human gastric mucosa. Gut 14:850–855

    Article  PubMed  CAS  Google Scholar 

  • Wiggans DS, Johnston JM (1959) The absorption of peptides. Biochim Biophys Acta 32:69–73

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 J. F. Bergmann Verlag, München

About this paper

Cite this paper

Grimble, G.K., Silk, D.B.A. (1988). The Optimum Form of Dietary Nitrogen in Gastrointestinal Disease: Proteins, Peptides or Amino Acids?. In: Barth, C.A., Fürst, P. (eds) Wahl der Nahrungsproteine—Grundlagen und Diätetik. J.F. Bergmann-Verlag. https://doi.org/10.1007/978-3-642-80522-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80522-6_3

  • Publisher Name: J.F. Bergmann-Verlag

  • Print ISBN: 978-3-8070-0377-1

  • Online ISBN: 978-3-642-80522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics