Skip to main content

WW (WWP) Domains: From Structure to Function

  • Chapter
Protein Modules in Signal Transduction

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 228))

Abstract

The WW domain, also known as WWP, or rsp5 domain, is a ~40 amino acid module which was identified in late 1994 by three different groups (Bork and Sudol 1994; André and Springael 1994; Hofmann and Bucher 1995). The name WW or WWP is based on the primary sequence of the domain, which includes two highly conserved tryptophans and an invariant proline. Like several other protein:protein or protein:lipid interaction domains, WW domains have been detected in numerous unrelated proteins, often alongside other domains, and often in multiple copies (reviewed in Staub and Rotin 1996) (Fig. 1). The most noted examples of WW-containing proteins are Nedd4 (neuronal precursor cell expressed developmentally downregulated) and its yeast homologues rsp5 and publ, YAP (yes associated protein), dystrophin, FE65, ess 1/dodo/pin 1, CD45AP (CD45 associated protein), formin binding proteins (FBPs), and several other less well characterized proteins (Figs. 1, 2). The presence of more than one WW domain in some of these proteins (e.g., Nedd4) suggests they interact with multiple targets. Phylogenetic analysis of the various WW domains reveals in some cases greater relatedness between WW domains from different proteins than those within the same protein (Sudol et al. 1995), implicating divergent origin. As is elucidated below, the WW domain is a proteimprotein interaction module which likely functions in an analogous (yet distinct) fashion to SH3 domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AndrĂ© B, Springael J-Y (1994) WWP, a new amino acid motif present in single or multiple copies in various proteins including dystrophin and the SH3-binding Yes-associated protein YAP65. Biochem Biophys Res Commun 205:1201–1205

    Article  PubMed  Google Scholar 

  • Borg JP, Ooi J, Levy E, Margolis B (1996) The phosphotyrosine interaction domains of XI1 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol 16:6229–6241

    PubMed  CAS  Google Scholar 

  • Bork P, Margolis B (1995) A phosphotyrosine interaction domain. Cell 80:693–694

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Sudol M (1994) The WW domain: a signalling site in dystrophin. Trends Biochem Sci 19:531–533

    Article  PubMed  CAS  Google Scholar 

  • Bradford MT, Chan DC, Leder P (1997) FBP WW domains and the abl SH3 domain bind to a specific class of proline-rich ligands. EMBO J 16:2376–2383

    Article  Google Scholar 

  • Bruyns E, Hendricks-Taylor LR, Meuer S, Koretzky GA, Schraven B (1995) Identification of the sites of interaction between lymphocyte phosphatase-associated phosphoprotein (LPAP) and CD45. J Biol Chem 270:31372–31376

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Bedford MT, Leder P (1996) Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J 15:1045–1054

    PubMed  CAS  Google Scholar 

  • Chen HI, Sudol M (1995) The WW domain of Yes-associated protein binds a novel proline-rich ligand that differs from the consensus established for SH3-binding modules. Proc Natl Acad Sci USA 92:7819–7823

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Umans L, Van Lauven F, Van Den Berghe H (1993) Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway J Cell Biol 121:295–304

    Article  PubMed  Google Scholar 

  • Duilio A, Zambrano N, Mogavero AR, Ammendola R, Cimino F, Russo T (1991) A rat brain NA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases. Nucleic Acids Res 19:5269–5274

    Article  PubMed  CAS  Google Scholar 

  • Einbond A, Sudol M (1996) Towards prediction of cognate complexes between the WW domain and proline-rich ligands. FEBS Lett 384:1–8

    Article  PubMed  CAS  Google Scholar 

  • Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L-C, Bapat B, Gallinger S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L (1996) MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Chen JK, Yu H, Simon JA, Schreiber SL (1994) Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Fiore F, Zambrano N, Minopoli G, Donini V, Duilio A, Russo T (1995) The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of She bind the intracellular domain of Alzheimer’s amyloid precursor protein. J Biol Chem 270:30853–30856

    Article  PubMed  CAS  Google Scholar 

  • Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier B (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci USA 93:15370–15375

    Article  PubMed  CAS  Google Scholar 

  • Galan JM, Volland C, Grimal DU, Haguenauer-Tsapis R (1994) The yeast plasma membrane uracil permease is stabilized against stress-induced degradation by a point mutation in a cyclin-like destruction box. Biochem Biophys Res Commun 201:769–775

    Article  PubMed  CAS  Google Scholar 

  • Galan JM, Moreau V, Andre B, Volland C, Haguenauer-Tsapis R (1996) Ubiquitination mediated by the Npilp/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem 271:10946–10952

    Article  PubMed  CAS  Google Scholar 

  • Garnier L, Wills JW, Verderame MF, Sudol M (1996) WW domains and retroviral budding. Nature 381:744–745(correspondence)

    Article  PubMed  CAS  Google Scholar 

  • Grenson M (1992) Amino acid transporters in yeast: structure, function and regulation. In: De Pont JML (ed) Molecular aspects of transport proteins. Elsevier Science, Amsterdam, pp 219–245

    Chapter  Google Scholar 

  • GuĂ©nette SY, Chen J, Jondro PD, Tanzi RE (1996) Association of a novel human FEG5-like protein with the cytoplasmic domain of the p-amyloid precursor protein. Proc Natl Acad Sci USA 93:10832–10837

    Article  PubMed  Google Scholar 

  • Hanes SD, Shank PR, Bostian KA (1989) Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisae. Yeast 5:55–72

    Article  PubMed  CAS  Google Scholar 

  • Hani J, Stumf G, Domdey H (1995) PTF1 encodes an essential protein in Saccharomyces cerevisiae, which shows strong homology with a new putative family of ppl-ases. FEBS Lett 365:198–202

    Article  PubMed  CAS  Google Scholar 

  • Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets RA, Lu Y, Canessa C, Iwasaki T, Rossier BC, Lifton RP (1995a) Hypertension caused by a truncated epithelial sodium channel gamma sub-unit: genetic heterogeneity of Liddle syndrome. Nature Genet 11:76–82

    Article  PubMed  CAS  Google Scholar 

  • Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP (1995b) A de novo missense mutation of the β subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA 25:11495–11499

    Article  Google Scholar 

  • Hein C, Springael JH, Volland C, Haguenauer-Tsapis R, Andre B (1995) NPI1, an essential yeast gene involved in induced degradation of Gapl and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol 18:77–87

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1996) Protein degradation or regulation: Ub the judge. Cell 84:813–815

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Bucher P (1995) The rsp5-domain is shared by proteins of diverse functions. FEBS Lett 358:153–157

    Article  PubMed  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92:2563–2567

    Article  PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Milatovich A, Ozcelik T, Yang B, Koepnick K, Francke U, Campbell KP (1993) Human dystroglycan: skeletal muscle NA, genomic structure, origin of tissue specific iso-forms and chromosomal localization. Hum Mol Genet 2:1651–1657

    Article  PubMed  CAS  Google Scholar 

  • Jauniaux J C, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39–44

    Article  PubMed  CAS  Google Scholar 

  • Jund R, Weber E, Chevallier MR (1988) Primary structure of the uracil transport protein of Saccharomyces cerevisiae. Eur J Biochem 171:417–424

    Article  PubMed  CAS  Google Scholar 

  • Jung D, Yang B, Meyer J, Chamberlain JS, Campbell KP (1995) Identification and characterization of the dystrophin anchoring site on p-dystroglycan. J Biol Chem 270:27305–27310

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor. Nature 325:733–736

    Article  PubMed  CAS  Google Scholar 

  • Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) NA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–515

    Article  PubMed  CAS  Google Scholar 

  • Kraut R, Ortega J A (1996) Inscuteable, a neural precursor gene of Drosophila, encodes a candidate for cytoskeleton adaptor protein. Dev Biol 174:65–81

    Article  PubMed  CAS  Google Scholar 

  • Kraut R, Chia W, Jan LY, Jan YN, Knoblich JA (1996) Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383:50–55

    Article  PubMed  CAS  Google Scholar 

  • Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid (3-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

    PubMed  CAS  Google Scholar 

  • Kumar S, Tomooka Y, Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Liddle GW, Bledsoe T, Coppage WS Jr (1963) A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 76:199–213

    CAS  Google Scholar 

  • Liu F, Hata A, Baker JC, Doody J, CĂ¡rcamo J, Harland RM, MassaguĂ© J (1996) A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381:620–623

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Hunter T (1995) Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell 81:413–424

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380:544–547

    Article  PubMed  CAS  Google Scholar 

  • Macias MJ, Hyvonen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat H (1996) Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382:646–649

    Article  PubMed  CAS  Google Scholar 

  • Maleszka R, Hanes SD, Hackett RL, De Conet HG, Gabor-Miklos GL (1996) The Drosophila mela-nogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Sacchromyces cerevisiae. Proc Natl Acad Sci USA 93:447–451

    Article  PubMed  CAS  Google Scholar 

  • McDonald FJ, Welsh MJ (1995) Binding of the proline-rich region of the epithelial Na channel to SH3 domains and its association with specific cellular proteins. Biochem J 312:491–497

    PubMed  CAS  Google Scholar 

  • McFarland EDC, Thomas ML (1995) CD45 protein-tyrosine phosphatase associates with the WW domain-containing protein, CD45AP, through the transmembrane region. J Biol Chem 270:28103–28107

    Article  Google Scholar 

  • Nefsky B, Beach D (1996) Publ acts as an E6-AP like protein ubiquitin ligase in the degradation of cdc25. EMBO J 15:1301–1312

    PubMed  CAS  Google Scholar 

  • Ohno S, Kawasaki H, Imajoh S, Suzuki H (1987) Tissue-specific expression of three distinct types of rabbit protein kinase C. Nature 325:161–166

    Article  PubMed  CAS  Google Scholar 

  • Osmani SA, Pu RT, Morris NR (1988) Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell 53:237–244

    Article  PubMed  CAS  Google Scholar 

  • Pawson T (1995) Protein modules and signalling networks. Nature 373:573–579

    Article  PubMed  CAS  Google Scholar 

  • Pingel JT, Thomas ML (1989) Evidence that leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Pirozzi G, Monnell DM, Uveges AJ, Sparks AB, Carter JM, Kay BK, Fowlkes DM (1996) Identification of novel human WW domain - containing proteins by cloning of ligand targets. Mol Biol Cell 7 (abstract 1991)

    Google Scholar 

  • Ranganathan R, Lu KP, Hunter T, Noel JP (1997) X-Ray crystal structure and functional properties of the mitotic peptidyl-prolyl isomerase Pinl Cell, (in press)

    Google Scholar 

  • Rotin D, Baagi D, O’Brodovich H, Merilainen J, Lehto VP, Canessa C, Rossier BC, Downey GP (1994) An SH3 binding region in the epithelial Na channel (aN) mediates its localization at the apical membrane. EMBO J 13:4440–4450

    PubMed  CAS  Google Scholar 

  • Saleki R, Jia Z, Karagiannis J, Young P (1997) Low tolerance in Schizosaccharomyces pombe requires a functioning publ ubiquitin ligase. Mol Gen Genet 254:520–528

    Article  PubMed  CAS  Google Scholar 

  • Schild L, Canessa CM, Shimkets RA, Warnock DG, Lifton RP, Rossier BC (1995) A mutation in the epithelial sodium channel causing Liddle’s disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci USA 92:5699–5703

    Article  PubMed  CAS  Google Scholar 

  • Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15:2381–2387

    PubMed  CAS  Google Scholar 

  • Schraven B, Schoenhaut D, Bruyns E, Koretzky G, Eckerskorn C, Wallich R, Kirchgessner H, Sakorafas P, Labkovsky B, Ratnofsky S, Heuer S (1994) LPAP, a novel 32-kDa phosphoprotein that interacts with CD45 in human lymphocytes. J Biol Chem 269:29102–29111

    PubMed  CAS  Google Scholar 

  • Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR, Ulick S, Milora RV, Findling JW, Canessa CM, Rossier BC, Lifton RP (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the p subunit of the epithelial sodium channel. Cell 79:407–414

    Article  PubMed  CAS  Google Scholar 

  • Snyder PM, Price MP, Monald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ (1995) Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na + channel. Cell 83:969–978

    Article  PubMed  CAS  Google Scholar 

  • Staub O, Rotin D (1996) WW domains. Structure 4:495–499

    Article  CAS  Google Scholar 

  • Staub O, Dho S, Henry P, Correa J, Ishikawa T, Mlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in epithelial Na channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380

    PubMed  CAS  Google Scholar 

  • Staub O, Firsov D, Gantschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (EN) by ubiquitination (submitted)

    Google Scholar 

  • Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes-oncogene product. Oncogene 9:2145–2152

    PubMed  CAS  Google Scholar 

  • Sudol M, Chen HI, Bougeret C, Einbond A, Bork P (1995) Characterization of a novel protein-binding module - the WW domain. FEBS Lett 369:67–71

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Schild L, Enomoto N, Matsui N, Marumo F, Rossier B, Sasaki S (1996) Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest 97:1780–1784

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Maizel AL, Kitamura K, Ohta T, Kimura S (1994) Molecular cloning of the CD45-associated 30-kDa protein. J Biol Chem 269:2357–2360

    PubMed  CAS  Google Scholar 

  • Volland C, Urban-Grimal D, Geraud G, Haguenauer-Tsapis R (1994) Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem 269:9833–9841

    PubMed  CAS  Google Scholar 

  • Weiss A (1993) A cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73:209–212

    Article  PubMed  CAS  Google Scholar 

  • Worton R (1995) Muscular dystrophies: diseases of the dystrophin-glycoprotein complex. Science 270:755–756

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Jung D, Motto D, Meyer J, Koretzky G, Campbell KP (1995) SH3 domain-mediated interaction of Dystroglycan and GRB2. J Biol Chem 270:11711–11714

    Article  PubMed  CAS  Google Scholar 

  • Ye XS, Xu G, Pu RT, Fincher RR, Muire SL, Osmani AH, Osmani SA (1995) The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cycli: coordination of two mitosis promoting kinases. EMBO J 14:986–994

    PubMed  CAS  Google Scholar 

  • Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rotin, D. (1998). WW (WWP) Domains: From Structure to Function. In: Pawson, A.J. (eds) Protein Modules in Signal Transduction. Current Topics in Microbiology and Immunology, vol 228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80481-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80481-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80483-0

  • Online ISBN: 978-3-642-80481-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics