Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 228))

Abstract

Pleckstrin homology (PH) domains are small protein modules of around 120 amino acids that are found in a large number of proteins involved in intracellular signaling and cytoskeletal organization, often occurring alongside SH2, SH3, PTB and other domains discussed in this volume. PH domains were first noted by Mayer et al. (1993) and Haslam et al. (1993) as sequences found in a number of intracellular signaling molecules that show limited homology to a region repeated in the protein pleckstrin (Tyers et al. 1988). As a result, this 47-kDa protein, which is the major substrate of protein kinase C (PKC) in platelets, has lent its name to a domain now identified in more than 100 different proteins involved in different signaling and cytoskeletal organization processes. Soon after the identification of the PH domain, structural studies showed that it does indeed form an independent module with a characteristic β-sandwich structure. The functions of PH domains are now becoming more clear, and the current view is that they are involved in recruitment of their host proteins to cell membranes. In some cases this recruitment is achieved through direct interaction of the PH domain with specific membrane components, and can be directly signal-dependent — with the PH domain binding to a lipid second messenger. In this chapter, we will discuss the structure of PH domains, and the characteristics that make them ideally suited for binding to the membrane surface. We will also review the current state of knowledge regarding PH domain function and ligand-binding properties, and will consider how they may participate in defining the specificity of intermolecular interactions and compartmentalization required for the function of their host proteins in signaling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Houston H, Allen J, Lints T, Harvey R (1992) The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the ber gene and a yeast gene(CDC24) involved in cytoskeletal organization. Oncogene 7:611–618

    PubMed  CAS  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  • Andjelkovic M, Jakubowicz T, Cron P, Ming X-F, Han J-W, Hemmings BA (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA 93:5699–5704

    Article  PubMed  CAS  Google Scholar 

  • Aronheim AD, Engelberg D, Li N, Al-Alawi N, Schlessinger J, Karin M (1994) Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78: 949–961

    Article  PubMed  CAS  Google Scholar 

  • Artalejo CR, Henley J, NcNiven M, Palfrey HC (1995) Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2 +, GTP and dynamin, but not clathrin. Proc Natl Acad Sci USA 92:8328–8332

    Article  PubMed  CAS  Google Scholar 

  • Artalejo CR, Lemmon MA, Schlessinger J, Palfrey HC (1997) Specific role for the PH domain of dynamin-1 in the regulation of rapid endocytosis in adrenal chromaffin cells. EMBO J 16:1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum R, Telliez J-B, Goonesekerra S, Feig LA (1996) The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium. Mol Cell Biol 16:4888–4896

    PubMed  CAS  Google Scholar 

  • Burgering BM, Coffer P (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  PubMed  CAS  Google Scholar 

  • Burgess WH, Dionne CA, Kaplow JM, Mudd R, Friesel R, Zilberstein A, Schlessinger J, Jaye M (1990) Characterization and cDNA cloning of phospholipase C-γ, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-aetivated tyrosine kinase. Mol Cell Biol 10:4770–4777

    CAS  Google Scholar 

  • Carpenter LC, Cantley CL (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8:153–158

    Article  PubMed  CAS  Google Scholar 

  • Cerione RA, Zheng Y (1996) The Dbl family of oncoproteins. Curr Opin Cell Biol 8:216–222

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Camonis JH, Gale NW, Van Aelst L, Wigler MH, Bar-Sagi D (1993) Human Sos 1: a guanine nucleotide exchange factor for Ras that binds to Grb2. Science 260:1338–1343

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Paris S, Antonny B, Robineau S, Beraud-Dufour S, Jackson CL, Chabre M (1996) A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384:481–484

    Article  PubMed  CAS  Google Scholar 

  • Chen R-H, Cobalan-Garcia S, Bar-Sagi D (1997) The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J 16:1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR (1992) AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89:9267–9271

    Article  PubMed  CAS  Google Scholar 

  • Chothia C (1984) Principles that determine the structure of proteins. Annu Rev Biochem 53:537–572

    Article  PubMed  CAS  Google Scholar 

  • Chuang TT, Sallese, M, Ambrosini, G, Parruti, G, De Blasi A (1992) High expression of ß-adrenergic receptor kinase in human peripheral blood leukocytes: isoproterenol and platelet activating factor can induce kinase translocation. J Biol Chem 267:6886–6892

    PubMed  CAS  Google Scholar 

  • Cifuentes ME, Honkanen L, Rebecchi MJ (1993) Proteolytic fragments of phosphoinositide-specific phospholipase C-δ1: catalytic and membrane binding properties. J Biol Chem 268:11586–11593

    PubMed  CAS  Google Scholar 

  • Cifuentes ME, Delaney T, Rebecchi MJ (1994) D-Myo-inositol 1,4,5-trisphosphate inhibits binding of phospholipase C-δ1 to bilayer membranes. J Biol Chem 269:1945–1994

    PubMed  CAS  Google Scholar 

  • Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin-2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci USA 91:644–648

    Article  PubMed  CAS  Google Scholar 

  • Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  • Davis LH, Bennett V (1994) Identification of two regions of ßG spectrin that bind to distinct sites in brain membranes. J Biol Chem 269:4409–4416

    PubMed  CAS  Google Scholar 

  • Didichenko SA, Tilton B, Hemmings BA, Ballmer-Hofer K, Thelen M (1996) Constitutive activation of protein kinase B and phosphorylation of p47phox by a membrane-targeted phosphoinositide 3-kinase. Curr Biol 6:1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Downing AK, Driscoll PC, Gout I, Salim K, Zvelebil MJ, Waterfield MD (1994) Three-dimensional solution structure of the pleckstrin homology domain from dynamin. Curr Biol 4:884–891

    Article  PubMed  CAS  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine kinase Akt Science 275:661–665

    Article  PubMed  CAS  Google Scholar 

  • Eck MJ, Dhe-Paganon S, Trüb T, Nolte RT, Shoelson SE (1996) Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85:695–705

    Article  PubMed  CAS  Google Scholar 

  • Essen L-O, Perisic O, Cheung R, Katan M, Williams R (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase Cd. Nature 380:595–602

    Article  PubMed  CAS  Google Scholar 

  • Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1994) Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell 79:199–209

    Article  PubMed  CAS  Google Scholar 

  • Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1995) Structure of a high affinity complex between inositol-1,4,5-trisphosphate and a phospholipase C pleckstrin homology domain. Cell 83:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Font de Mora J, Guerrero C, Mahadevan D, Coque JJR, Rojas JM, Esteban LM, Rebecchi M, Santos E (1996) Isolated Sosl PH domain exhibits germinal vesicle breakdown-inducing activity in Xenopus oocytes. J Biol Chem 271:18272–18276

    Article  Google Scholar 

  • Franke TF, Yang S-I, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736

    Article  PubMed  CAS  Google Scholar 

  • Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668

    Article  PubMed  CAS  Google Scholar 

  • Freeh M, Andjelkovic M, Reddy KK, Falck JR, Hemmings BA (1997) High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of Rac/protein kinase B and their influence on the kinase activity. J Biol Chem 272: 8474–8481

    Article  Google Scholar 

  • Fukuda M, Mikoshiba K (1996) Structure-function relationships of the mouse Gaplm: determination of the inositol 1,3,4,5 tetrakisphosphate-binding domain. J Biol Chem 271:18838–18842

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Kojima T, Kabayama H, Mikoshiba K (1996) Mutation of the pleckstrin homology domain of Bruton’s tyrosine kinase in immunodeficiency impaired inisitol 1,3,4,5-tetrakisphosphate binding capacity. J Biol Chem 271:30303–30306

    Article  PubMed  CAS  Google Scholar 

  • Fushman D, Cahill S, Lemmon MA, Schlessinger J, Cowburn D (1995) Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy. Proc Natl Acad Sci USA 92:816–820

    Article  PubMed  CAS  Google Scholar 

  • Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, Petrova V, McLaughlin S, Rebecchi MJ (1995) The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34:16228–16234

    Article  PubMed  CAS  Google Scholar 

  • Gibson TJ, Hyvonen M, Musacchio A, Saraste M, Birney E (1994) PH domain: the first anniversary. Trends Biochem Sci 19:349–353

    Article  PubMed  CAS  Google Scholar 

  • Habets GGM, Scholtes EHM, Zuydgeest D, van der Kammen RA, Stam JC, Collard JG (1994) Identification of an invasion inducing gene, termed Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77:537–549

    Article  PubMed  CAS  Google Scholar 

  • Harlan JE, Hajduk PJ, Yoon HS, Fesik SW (1994) Pleckstrin homology domains bind to phosphati-dylinositol-4,5-bisphosphate. Nature 371:168–170

    Article  PubMed  CAS  Google Scholar 

  • Haslam RJ, Koide HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363:309–310

    Article  PubMed  CAS  Google Scholar 

  • Hemmings BA (1997) Akt signaling: linking membrane events to life and death decisions. Science 275:628–630

    Article  PubMed  CAS  Google Scholar 

  • Horii Y, Beeler JF, Sakaguchi K, Tachibana M, Miki T (1994) A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J 13:4776–4786

    PubMed  CAS  Google Scholar 

  • Hu R-J, Watanabe M, Bennett V (1992) Characterization of human brain cDNA encoding the general isoform of P-spectrin. J Biol Chem 267:18715–18722

    PubMed  CAS  Google Scholar 

  • Hyvonen M, Macias MJ, Nilges M, Oschkinat H, Saraste M, Wilmanns M (1995) Structure of the binding site for inositol phosphates in a PH domain. EMBO J 14:4676–4685

    PubMed  CAS  Google Scholar 

  • Inglese J, Koch WJ, Caron MG, Lefkowitz RJ (1992) Isoprenylation in regulation of signal transduction by G-protein-coupIed receptor kinases. Nature 359:147–150

    Article  PubMed  CAS  Google Scholar 

  • Inglese J, Koch WJ, Touhara K, Lefkowitz RJ (1995) Gßγ interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci 20:151–156

    Article  PubMed  CAS  Google Scholar 

  • James SR, Downes CP, Gigg R, Grove SJA, Holmes AB, Alessi DR (1996) Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J 315:709–713

    PubMed  CAS  Google Scholar 

  • Kanematsu T, Takeya H, Watanabe Y, Ozaki S, Yoshida M, Koga T, Iwanaga S, Hirata M (1992) Putative inositol 1,4,5-trisphosphate binding proteins in rat brain cytosol. J Biol Chem 267:6518–6525

    PubMed  CAS  Google Scholar 

  • Karlovich CA, Bonfini L, McCollam L, Rogge RD, Daga A, Czech MP, Banerjee U (1995) In vivo functional analysis of the Ras exchange factor Son of Sevenless. Science 268:576–579

    Article  PubMed  CAS  Google Scholar 

  • Klarlund JK, Guilherme A, Holik JJ, Virbasius A, Czech MP (1997) Signaling by 3,4,5-phosphoinositide through proteins containing pleckstrin and Sec7 homology domains. Science (in press)

    Google Scholar 

  • Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo M-A, Williams LT (1996) Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing pathways. Mol Cell Biol 16:4117–4127

    PubMed  CAS  Google Scholar 

  • Klippel A, Kavanaugh WM, Pot D, Williams LT (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17:338–344

    PubMed  CAS  Google Scholar 

  • Koch WJ, Inglese J, Stone WC, Lefkowitz RJ (1993) The binding site for the jfy subunits of heterod-trimeric G protein on the β-adrenergic receptor kinase. J Biol Chem 268:8256–8260

    PubMed  CAS  Google Scholar 

  • Koch WJ, Hawes BE, Inglese J, Luttrell LM, Lefkowitz RJ (1994) Cellular expression of the carboxy terminus of a G protein-coupled receptor kinase attenuates Gßγ-mediated signaling. J Biol Chem 269:6193–6197

    PubMed  CAS  Google Scholar 

  • Kohn AD, Kovacina KS, Roth RA (1995) Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing Ser/Thr kinase. EMBO J 14:4288–4295

    PubMed  CAS  Google Scholar 

  • Kohn AD, Takeuchi F, Roth RA (1996) Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 271:21920–21926

    Article  PubMed  CAS  Google Scholar 

  • Kolanus W, Nagel W, Schiller B, Zeitlmann L, Godar S, Stockinger H, Seed B (1996) aLb2 integrin/ LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Kuroda S, Kikkawa U (1994) The pleckstrin homology domain of Rac protein kinase associates with the regulatory domain of protein kinase-C ζ. Biochem Biophys Res Commun 205:1770–1775

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U (1995) Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun 216:526–534

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Matsuzaki H, Tanaka M, Ono Y, Tokunaga C, Kuroda S, Kikkawa U (1996) Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 93:7639–7643

    Article  PubMed  CAS  Google Scholar 

  • Kraulis P (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Kubiseski TJ, Chook YM, Parris WE, Rozakis-Adcock M, Pawson T (1997) High affinity binding of the pleckstrin homology domain of mSosl to phosphatidylinositol (4,5)-bisphosphate. J Biol Chem 272:1799–1804

    Article  PubMed  CAS  Google Scholar 

  • Langhans-Rajasekaran SA, Wan Y, Huang X-Y (1995) Activation of Tsk and Btk tyrosine kinase by G protein py subunits. Proc Natl Acad Sci USA 92:8601–8605

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM, O’Brien R, Sigler PB, Schlessinger J (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92:10472–10476

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM, Schlessinger J (1996) PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85:621–624

    Article  PubMed  CAS  Google Scholar 

  • Li T, Tsukuda S, Satterthwiate A, Havlik MH, Park H, Takatsu K, Witte ON (1995) Activation of Bruton’s tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 2:451–460

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz B, Fainstein E, Marcelle C, Shtivelman E, Amson R, Gale RP, Canaani E (1988) bcr genes and transcripts. Oncogene 2:113–117

    PubMed  CAS  Google Scholar 

  • Lomasney JW, Cheng H-F, Wang L-P, Kuan Y-S, Liu S-M, Fesik SW, King K (1996) Phosphatidylinositol 4,5-bisphosphate binding to the pleckstrin homology domain of phospholipase C-δ1 enhances enzyme activity. J Biol Chem 271:25316–25326

    Article  PubMed  CAS  Google Scholar 

  • Lombardo CR, Weed SA, Kennedy SP, Forget BG, Morrow JS (1994) βII-spectrin (fodrin) and βIS2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). J Biol Chem 269:29212–29219

    PubMed  CAS  Google Scholar 

  • Luttrell LM, Hawes BE, Touhara K, van Biesen T, Koch WJ, Lefkowitz RJ (1995) Effect of cellular expression of pleckstrin homology domains on Gj-coupled receptor signaling. J Biol Chem 270:12984–12989

    Article  PubMed  CAS  Google Scholar 

  • Macias MJ, Musacchio A, Ponstingl H, Nilges M, Saraste M, Oschkinat H (1994) Structure of the pleckstrin homology domain from p-spectrin. Nature 369:675–677

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan D, Thanki N, Singh J, McPhie P, Zangrilli D, Wang L-M, Guerrero C, LeVine H, Humblet C, Saldanha J, Gutkind JS, Najmabadi-Haske T (1995) Structural studies on the PH domains of Dbl, Sosl, IRS-1, and PARKl and their differential binding to Gpy subunits. Biochemistry 34:9111–9117

    Article  PubMed  CAS  Google Scholar 

  • Mano H, Ishikawa F, Nishida J, Hirai H, Takaku F (1990) A novel protein-tyrosine kinase, tec, is preferentially expressed in liver. Oncogene 5:1781–1786

    PubMed  CAS  Google Scholar 

  • Margolis B, Silvennoinen O, Comoglio F, Roonprapunt C, Skolnik EY, Ullrich A, Schlessinger J (1992) High-efficiency expression cloning of epidermal growth factor receptor-binding proteins with Src homology domains. Proc Natl Acad Sci USA 89:8894–8898

    Article  PubMed  CAS  Google Scholar 

  • Mattsson PT, Vihinen M, Smith CIE (1996) X-linked agammaglobulinemia (XLA): a genetic tyrosine kinase (Btk) disease. Bioessays 18:825–834

    Article  PubMed  CAS  Google Scholar 

  • Mayer BJ, Ren R, Clark KL, Baltimore D (1993) A putative modular domain present in. diverse signaling molecules. Cell 73:629–630

    Article  PubMed  CAS  Google Scholar 

  • McCollam L, Bonfini L, Karlovich CA, Conway BR, Kozma LM, Banerjee U, Czech MP (1995) Functional roles for the pleckstrin and Dbl homology regions in the Ras exchange factor Son-of-sevenless. J Biol Chem 270:15954–15957

    Article  PubMed  CAS  Google Scholar 

  • Musacchio A, Gibson T, Rice P, Thompson J, Saraste M (1993) The PH domain: a common piece in a pathwork of signalling proteins. Trends Biochem Sci 18:343–348

    Article  PubMed  CAS  Google Scholar 

  • Myers MG Jr, Grammer TC, Brooks J, Glasheen EM, Wang L-M, Sun XJ, Blenis J, Pierce JH, White MF (1995) The pleckstrin homology domain in insulin receptor substrate-1 sensitizes insulin signaling. J Biol Chem 270:11715–11718

    Article  PubMed  CAS  Google Scholar 

  • Nicholls A, Shap KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct Genet 11:281–296

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Svejgaard A, Skov S, Dobson P, Bendtzen K, Geisler C, Odum N (1996) IL-2 induces β2 integrin adhesion via a wortmannin/LY294002-sensitive, rapamycin-resistant pathway Phosphorylation of a 125-kilodalton protein correlates with induction of adhesion, but not mitogenesis. J Immunol 157:5350–5358

    PubMed  CAS  Google Scholar 

  • Parker PJ, Hemmings BA, Gierschik P (1994) PH domains and phospholipases - a meaningful relationship? Trends Biochem Sci 19:54–55

    Article  PubMed  CAS  Google Scholar 

  • Paterson HF, Savopoulos JW, Perisic O, Cheung R, Ellis MV, Williams RL, Katan M (1995) Phospholipase C-δ1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem J 312:661–666

    PubMed  CAS  Google Scholar 

  • Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ (1992) Role of ßγ subunits of heterotrimeric G proteins in targeting the p-adrenergic receptor kinase to membrane-bound receptors. Science 257:1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Pitcher J A, Touhara K, Payne ES, Lefkowitz RJ (1995) Pleckstrin homology domain-mediated membrane association and activation of the p-adrenergic receptor kinase requires coordinate interaction with Gßγ subunits and lipid. J Biol Chem 270:11707–11710

    Article  PubMed  CAS  Google Scholar 

  • Ramirez F, Jain MK (1991) Phospholipase A2 at the bilayer interface. Proteins Struct Funct Genet 9: 229–239

    Article  PubMed  CAS  Google Scholar 

  • Rebecchi M, Peterson A, McLaughlin S (1992) Phosphoinositide-specific phospholipase C-δ1 binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry 31:12742–12747

    Article  PubMed  CAS  Google Scholar 

  • Richardson J (1977) p-Sheet topology and the relatedness of proteins. Nature 268:495–500

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Tronick SR, Aaronson SA, Eva A (1988) Molecular cloning and characterization of the human dbl proto-oncogene: evidence that its overexpression is sufficient to transform NIH/3T3 cells. EMBO J 7:2465–2473

    PubMed  CAS  Google Scholar 

  • Salim K, Bottomley MJ, Querfurth E, Zvelebil MJ, Gout I, Scaife R, Margolis RL, Gigg R, Smith CIE, Driscoll PC, Waterfield MD, Panayotou G (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and the Bruton’s tyrosine kinase. EMBO J 15:6241–6250

    PubMed  CAS  Google Scholar 

  • Schlessinger J (1994) SH2/SH3 signaling proteins. Curr Opin Genet Dev 4:25–30

    Article  PubMed  CAS  Google Scholar 

  • Scott DL, Mandel AM, Sigler PB, Honig B (1994) The electrostatic basis for the interfacial binding of secretory phospholipases A2. Biophys J 67:493–504

    Article  PubMed  CAS  Google Scholar 

  • Shaw G (1993) Identification of novel pleckstrin homology (PH) domain provides a hypothesis for PH domain function. Biochem Biophys Res Commun 195:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Shaw G (1996) The pleckstrin homology domain: an intriguing multifunctional protein module. Bioessays 18:35–46

    Article  PubMed  CAS  Google Scholar 

  • Shou C, Farnsworth CL, Neel BG, Feig LA (1992) Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 358:351–354

    Article  PubMed  CAS  Google Scholar 

  • Siliciano JD, Morrow TA, Desiderio SV (1992) Itk, a T-cell specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci USA 89:11194–11198

    Article  PubMed  CAS  Google Scholar 

  • Sontag J-M, Fyske EM, Ushkaryov Y, Liu J-P, Robinson PJ, Südhof TC (1994) Differential expression and regulation of multiple dynamins. J Biol Chem 269:4747–4754

    Google Scholar 

  • Suh P, Ryu S, Moon K, Suh H, Rhee S-G (1988) Cloning and sequence of multiple forms of phospholipase C. Cell 54:161–169

    Article  PubMed  CAS  Google Scholar 

  • Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    Article  PubMed  CAS  Google Scholar 

  • Thomas JD, Sideras P, Smith CIE, Vorechovsky I, Chapman V, Paul WE (1993) Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261:355–358

    Article  PubMed  CAS  Google Scholar 

  • Timm D, Salim K, Gout I, Guruprasad L, Waterfield M, Blundell T (1994) Crystal structure of the pleckstrin homology domain from dynamin. Nature Struct Biol 1:782–788

    Article  PubMed  CAS  Google Scholar 

  • Touhara K, Inglese J, Pitcher J A, Shaw G, Lefkowitz RJ (1994) Binding of G protein ßγ-subunits to pleckstrin homology domains. J Biol Chem 269:10217–10220

    PubMed  CAS  Google Scholar 

  • Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K, McCormick F (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Tsukuda S, Simon MI, Witte ON, Katz A (1994) Binding of ßγ subunits of heterotrimeric G-proteins to the PH domain of Bruton’s tyrosine kinase. Proc Natl Acad Sci USA 91:11256–11260

    Article  Google Scholar 

  • Tyers M, Rachubinski RA, Stewart MI, Varrichio AM, Shorr RGL, Haslam RJ, Harley CB (1988) Molecular cloning and expression of the major protein kinase C substrate of platelets. Nature 333:470–473

    Article  PubMed  CAS  Google Scholar 

  • van der Bliek AM, Redelmeister TE, Damke H, Tisdale EJ Meyerowitz EM, Schmid SJ (1993) Mutations in human dynamin block, an intermediate stage in coated vesicle formation. J Cell Biol 122:553–563

    Article  PubMed  Google Scholar 

  • Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, Smith CIE, Bentley DR (1993) The gene involved in X-linked agamma-globulinaemia is a member of the sre family of protein-tyrosine kinases. Nature 361:226–233

    Article  PubMed  CAS  Google Scholar 

  • Vihinen M, Zvelebil MJJM, Zhu Q, Brooimans RA, Ochs HD, Zegers BJM, Nilsson L, Waterfield MD, Smith CIE (1995) Structural basis for pleckstrin homology domain mutations in X-linked agammaglobulinemia. Biochemistry 34:1475–1481

    Article  PubMed  CAS  Google Scholar 

  • Voliovitch H, Schindler DG, Hadari YR, Taylor SI, Accili D, Zick Y (1995) Tyrosine phosphorylation of insulin receptor substrate-1 in vivo depends upon the presence of its pleckstrin homology region. J Biol Chem 270:18083–18087

    Article  PubMed  CAS  Google Scholar 

  • Wang D-S, Shaw G (1995) The association of the C-terminal region of ßIΣII spectrin to brain membrane is mediated by a PH domain, does not require membrane proteins, and coincides with a inositol-145-trisphosphate binding site. Biochem Biophys Res Commun 217:608–615

    Article  PubMed  CAS  Google Scholar 

  • Wang D-S, Shaw R, Winkelmann JC, Shaw G (1994) Binding of PH domains of ß-adrenergic receptor kinase and ß-spectrin to WD40/b-transducin repeat containing regions of the ß-subunit of trimeric G-proteins. Biochem Biophys Res Commun 203:29–35

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Fisher EMC, Jia Q, Dum JM, Porfiri E, Downward J, Egan SE (1995) The Grb2 binding domain of mSosl is not required for downstream signal transduction. Nature Genetics 10:294–300

    Article  PubMed  CAS  Google Scholar 

  • Wang D-S, Miller R, Shaw R, Shaw G (1996) The pleckstrin homology domain of human ßIΣII spectrin is targeted to the plasma membrane in vivo. Biochem Biophys Res Commun 225:420–426

    Article  PubMed  CAS  Google Scholar 

  • Whitehead I, Kirk H, Tognon C, Trigo-Gonzalez G, Kay R (1995) Expression cloning of lfc, a novel oncogene with structural similarities to guanine nucleotide exchange factors and to the regulatory region of protein kinase C. J Biol Chem 270:18388–18395

    Article  PubMed  CAS  Google Scholar 

  • Woolfson DN, Evans PA, Hutchinson EG, Thornton JM (1993) Topological and stereochemical restrictions in ß-sandwich protein structures. Protein Eng 5:461–470

    Article  Google Scholar 

  • Yagisawa H, Hirata M, Kanematsu T, Watanabe Y, Ozaki S, Sakuma K, Tanaka H, Yabuta N, Kamata H, Hirata H, Nojima H (1994) Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1. J Biol Chem 269:20179–20188

    PubMed  CAS  Google Scholar 

  • Yang W, Desiderio S (1997) BAP-135, a target for Bruton’s tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad Sci USA 94:604–609

    Article  PubMed  CAS  Google Scholar 

  • Yao L, Kawakami Y, Kawakami T (1994) The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci USA 91:9175–9179

    Article  PubMed  CAS  Google Scholar 

  • Yenush L, Makati KJ, Smith-Hall J, Ishibashi O, Myers MG, White MF (1996) The pleckstrin homology domain is the principal link between the insulin receptor and IRS-1. J Biol Chem 271:24300–24306

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hajduk PJ, Petros AM, Olejniczak ET, Meadows RP, Fesik SW (1994) Solution structure of a pleckstrin-homology domain. Nature 369:672–675

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Talluri S, Deng H, Branton D, Wagner G (1995) Solution structure of the pleckstrin homology domain of Drosophila beta-spectrin. Structure 3:1185–1195

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Cahill SM, Lemmon MA, Fushman D, Schlessinger J, Cowburn D (1996) Identification of the binding site for acidic phospholipids on the PH domain of dynamin: implications for stimulation of GTPase activity. J Mol Biol 255:14–21

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Zangrilli D, Cerione RA, Eva A (1996) The pleckstrin homology domain mediates transformation by oncogenic Dbl through specific intracellular targeting. J Biol Chem 271: 19017–19020

    Article  PubMed  CAS  Google Scholar 

  • Zhou M-M, Ravichandran KS, Olejniczak ET, Petros AM, Meadows RP, Sattler M, Harlan JE, Wade WS, Burakoff SJ, Fesik SW (1995) Structure and ligand recognition of the phosphotyrosine binding domain of She. Nature 378:584–592

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemmon, M.A., Ferguson, K.M. (1998). Pleckstrin Homology Domains. In: Pawson, A.J. (eds) Protein Modules in Signal Transduction. Current Topics in Microbiology and Immunology, vol 228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80481-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80481-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80483-0

  • Online ISBN: 978-3-642-80481-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics