Skip to main content

Mechanism and Function of Signaling by the TGFβ Superfamily

  • Chapter
Protein Modules in Signal Transduction

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 228))

Abstract

Transforming growth factor β (TGFβ) was initially identified based on its ability to induce the anchorage-independent growth of normal rat kidney fibroblasts (Roberts et al. 1981). It is now apparent that TGFβ is the founding member of a superfamily of growth and differentiation factors that includes almost 40 members from animals as diverse as C. elegans, Drosophila and humans. The superfamily is generally subdivided into three groups, the prototypic TGFβs, the activins and the bone morphogenetic proteins (BMPs). However, with new members constantly being identified these divisions are becoming increasingly difficult to define. Nevertheless, the study of the biology of this large family has provided us with some interesting and surprising insights into how these factors can regulate a staggering array of diverse developmental and physiological processes. In addition, major advances have been made in elucidating the mechanism of signaling by TGFβ-like factors. In this review we will focus on recent developments in our understanding of TGFβ signaling and on the multiple roles these factors play in controlling inductive interactions and patterning during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albano RM, Groome N, Smith JC (1993) Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation. Development 117:711–723

    PubMed  CAS  Google Scholar 

  • Albano RM, Arkell R, Beddington RSP, Smith JC (1994) Expression of inhibin subunits and follistatin during postimplantation mouse development: decidual expression of activin and expression of follistatin in primitive streak, somites and hindbrain. Development 120:803–813

    PubMed  CAS  Google Scholar 

  • Arora K, Dai H, Kazuko SG, Jamal J, O’Connor MB, Letsou A, Warrior R (1995) The Drosophila schnurri gene acts in the dpp/TGF-β signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81:781–790

    PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL (1996) Signal transduction by members of the transforming growth factor-p superfamily. Cytokine Growth Fact Rev 7:327–339

    CAS  Google Scholar 

  • Attisano L, Cárcamo J, Ventura F, Weis FMB, Massagué J, Wrana JL (1993) Identification of human Activin and TGF-β type I receptors that form heterodimeric kinase complexes with type II receptors. Cell 75:671–680

    PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL, López-Casillas F, Massagué J (1994) TGF-β receptors and actions. Biochim Biophys Acta 1222:71–80

    PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL, Montalvo E, Massagué J (1996) Activation of signalling by the activin receptor complex. Mol Cell Biol 16:1066–1073

    PubMed  CAS  Google Scholar 

  • Baker JC, Harland R (1996) A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev 10:1880–1889

    PubMed  CAS  Google Scholar 

  • Behringer RR, Finegold MJ, Cate RL (1994) Müllerian-inhibiting substance function during mammalian sexual development. Cell 79:415–425

    PubMed  CAS  Google Scholar 

  • Brummel T, Twombly V, Marques G, Wrana JL, Newfeld S, Attisano L, Massagué J, O’Connor MB, Gelbart WM (1994) Characterization and relationship of DPP receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78:251–261

    PubMed  CAS  Google Scholar 

  • Cárcamo J, Weis FMB, Ventura F, Wieser R, Wrana JL, Attisano L, Massagué J (1994) Type I receptors specify growth inhibitory and transcriptional responses to TGF-β and activin. Mol Cell Biol 14:3810–3821

    PubMed  Google Scholar 

  • Chen F, Weinberg RA (1995) Biochemical evidence for the autophosphorylation and transphosphorylation of transforming growth factor p receptor kinases. Proc Natl Acad Sci USA 92:1565–1569

    PubMed  CAS  Google Scholar 

  • Chen R-H, Moses HL, Maruoka EM, Derynck R, Kawabata M (1995) Phosphorylation-dependent interaction of the cytoplasmic domains of the type I and type II transforming growth factor-p receptors. J Biol Chem 270:12235–12241

    PubMed  CAS  Google Scholar 

  • Chen X, Rubock MJ, Whitman M (1996) A transcriptional partner for MAD proteins in TGF-β signalling. Nature 383:691–696

    PubMed  CAS  Google Scholar 

  • Chen Y, Lebrun J-J, Vale W (1996) Regulation of transforming growth factor β- and activin-induced transcription by mammalian Mad proteins. Proc Natl Acad Sci USA 93:12992–12997

    PubMed  CAS  Google Scholar 

  • Cohn MJ, Tickle C (1996) Limbs: a model for pattern formation within the vertebrate body plan. Trends Genet 12:253–257

    PubMed  CAS  Google Scholar 

  • Collignon J, Varlet I, Robertson EJ (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381:155–158

    PubMed  CAS  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928

    PubMed  CAS  Google Scholar 

  • Dale L, Matthews G, Colman A (1993) Secretion and mesoderm-inducing activity of the TGF-β-related domain of xenopus-Vg 1. EM BO J 12:4471–4480

    CAS  Google Scholar 

  • Derynck R, Zhang Y (1996) Intracellular signalling: the mad way to do it. Curr Biol 6:1226–1229

    PubMed  CAS  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    PubMed  CAS  Google Scholar 

  • Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807

    PubMed  CAS  Google Scholar 

  • Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M, Sariola H, Pachnis V (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:798–793

    Google Scholar 

  • Dyson S, Gurdon JB (1997) Activin signalling has a necessary function in Xenopus early development. Curr Biol 7:81–84

    PubMed  CAS  Google Scholar 

  • Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L-C, Bapat B, Gallinger S, Andrulis I, Thomsen G, Wrana JL, Attisano L (1996) MADR2 maps to 18q21 and encodes a TGFβ- regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552

    PubMed  CAS  Google Scholar 

  • Gañan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM (1996) Role of TGFβs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development 122:2349–2357

    PubMed  Google Scholar 

  • Garrigue-Antar L, Muñoz-Antonia T, Antonia SJ, Gesmonde J, Vellucci VF, Reiss M (1995) Missense mutations of the Transforming growth factor p type II receptor in human head and neck squamous carcinoma cells. Cancer Res 55:3982–3987

    PubMed  CAS  Google Scholar 

  • Gentry LE, Liobin MN, Purchio AF, Marquardt H (1988) Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol 8:4162–4168

    CAS  Google Scholar 

  • Graff JM, Bansal A, Melton DA (1996) Xenopus Mad proteins transduce distinct subsets of signals for the TGFβ superfamily. Cell 85:479–487

    PubMed  CAS  Google Scholar 

  • Graham A, Francis-West P, Brickell P, Lumsden A (1994) The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372:684–686

    PubMed  CAS  Google Scholar 

  • Green JBA, Smith JC (1991) Growth factors as morphogens. Trends Genet 7:245–250

    PubMed  CAS  Google Scholar 

  • Grieder NC, Nellen D, Burke R, Basler K, Affolter M (1995) schnurri is required for Drosophila dpp signalling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 81:791–800

    PubMed  CAS  Google Scholar 

  • Gurdon JB, Harger P, Mitchell A, Lemaire P (1994) Activin signalling and response to a morphogen gradient. Nature 371:487–492

    PubMed  CAS  Google Scholar 

  • Gurdon JB, Mitchell A, Mahony D (1995) Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376:520–521

    PubMed  CAS  Google Scholar 

  • Hahn SA, Schutte M, Shamsul Hoque ATM, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    PubMed  CAS  Google Scholar 

  • Harland RM (1994) The transforming growth factor p family and induction of vertebrate mesoderm: bone morphogenetic proteins are ventral inducers. Proc Natl Acad Sci USA 91:10243–10246

    PubMed  CAS  Google Scholar 

  • Hawley SHB, Wünnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KWY (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9:2923–2935

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359:609–614

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signalling promotes neurali-zation in Xenopus. Cell 77:273–281

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton D (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88:13–17

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17:78–89

    PubMed  CAS  Google Scholar 

  • Hogan BLM (1996) Bone morphogenic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    PubMed  CAS  Google Scholar 

  • Hogan BLM, Constantini F, Lacy E (1986) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Holley SA, Neul JL, Attisano L, Wrana JL, Sasai Y, O’Connor MB, De Robertis EM, Ferguson EL (1996) The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing DPP from activating its receptor. Cell 86:607–617

    PubMed  CAS  Google Scholar 

  • Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana JL (1996) MADRI, a MAD-related protein that functions in BMP2 signalling pathways. Cell 85:489–500

    PubMed  CAS  Google Scholar 

  • Hòtten G, Neidhardt H, Schneider C, Pohl J (1995) Cloning of a new member of the TGF-β family: a putative new activin pC chain. Biochem Biophys Res Commun 206:608–613

    Google Scholar 

  • Huang H-C, Murtaugh LC, Vize PD, Whitman M (1995) Identification of a potential regulator of early transcriptional responses to mesoderm inducer in the frog embryo. EMBO J 14:5965–5973

    PubMed  CAS  Google Scholar 

  • Hyatt BA, Lohr JL, Yost HJ (1996) Initiation of vertebrate left-right axis formation by maternal Vgl. Nature 384:62–65

    PubMed  CAS  Google Scholar 

  • Imbeaud S, Carré-Eusèbe D, Rey R, Belville C, Josso N, Picard JY (1994) Molecular genetics of the persistent Müllerian duct syndrome: a study of 19 families. Hum Mol Genet 3:125–131

    PubMed  CAS  Google Scholar 

  • Imbeaud S, Faure E, Lamarre I, Mattel MG, di Clemente N, Tizard R, Carré-Eusèbe D, Belville C, Tragethon L, Tonkin C, Nelson J, McAuliffe M, Bidart J-M, Lababidi A, Josso N, Cate RL, Picard J-Y (1995) Insensitivity to anti-Müllerian hormone due to a mutation in the human anti-Müllerian hormone receptor. Nature Genet 11:382–388

    PubMed  CAS  Google Scholar 

  • Jing S, Wen D, Yanbin Y, Hoist PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis J-C, Hu S, Altrock BW, Fox GM (1996) GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFR-oc, a novel receptor for GDNF. Cell 85:1113–1124

    PubMed  CAS  Google Scholar 

  • Johnson DW, Berg JN, Baldwin MA, Gallione C, Marondel I, Stenzil T, Speer M, Pericak-Vance M, Qumsiyeh WA, Schwartz C, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous MEM, Marchuk DA (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary hemorrhagic telangiectasia type 2. Nature Genet 13:189–196

    PubMed  CAS  Google Scholar 

  • Jones CM, Kuehn MR, Hogan BLM, Smith JC, Wright CVE (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121:3651–3662

    PubMed  CAS  Google Scholar 

  • Jones CM, Armes N, Smith JC (1996) Signalling by TGF-β family members: short range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr Biol 6:1468–1475

    PubMed  CAS  Google Scholar 

  • King J A, Marker PC, Seung KJ, Kingsley DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166:112–122

    PubMed  CAS  Google Scholar 

  • Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA (1992) The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF-β superfamily. Cell 71:399–410

    PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    PubMed  CAS  Google Scholar 

  • Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EMJ, Milbrandt J (1996) Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470

    PubMed  CAS  Google Scholar 

  • Kulkarni AB, Huh C-G, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Spora MB, Ward JM, Karlsson S (1993) Transforming growth factor pi null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90:770–774

    PubMed  CAS  Google Scholar 

  • Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J (1996) Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383:832–836

    PubMed  CAS  Google Scholar 

  • Lastres P, Letamend’a A, Zhang H, Rius C, Almendro N, Raab U, Lopez LA, Langa C, Fabra A, Letarte M, Bernabéu C (1996) Endoglin modulates cellular responses to TGF-βi. J Cell Biol 133:1109–1121

    PubMed  CAS  Google Scholar 

  • Lecuit T, Brook WJ, Ng M, Calleja M, Sun H, Cohen SM (1996) Two distinct mechanisms for long-range patterning by decapentaplegic in the Drosophila wing. Nature 381:387–393

    PubMed  CAS  Google Scholar 

  • Lemaire P, Kodjabachian L (1996) The vertebrate organizer: structure and molecules. Trends Genet 12:525–531

    PubMed  CAS  Google Scholar 

  • Letsou A, Arora K, Wrana J, Simin K, Twombly V, Jamal J, Staehling-Hampton K, Hoffmann FM, Gelbart WM, Massagué J, O’Connor MB (1995) Dpp signaling in Drosophila is mediated by the punt gene product: a dual ligand binding type II receptor of the TGF-β receptor family. Cell 80:899–908

    PubMed  CAS  Google Scholar 

  • Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB (1994) Maternal rescue of transforming growth factor-pi null mice. Science 264:1936–1938

    PubMed  CAS  Google Scholar 

  • Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814

    PubMed  CAS  Google Scholar 

  • Lin HY, Moustakas A, Knaus P, Wells RG, Henis YI, Lodish HF (1995) The soluble exoplasmic domain of the type II transforming growth factor (TGF)-P receptor: a heterogeneously glycosylated protein with high affinity and selectivity for TGF-β ligands. J Biol Chem 270:2747–2754

    PubMed  CAS  Google Scholar 

  • Liu F, Ventura F, Doody J, Massagué J (1995) Human type II receptor for bone morphogenetic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 15:3479–3486

    PubMed  CAS  Google Scholar 

  • Liu F, Hata A, Baker J, Doody J, Cárcamo J, Harland R, Massagué J (1996) A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381:620–623

    PubMed  CAS  Google Scholar 

  • López-Casillas F, Wrana JL, Massagué J (1993) Betaglycan presents ligand to the TGF-β signaling receptor. Cell 73:1435–1444

    PubMed  Google Scholar 

  • Lowe LA, Supp DM, Sampath K, Yokoyama T, Wright CVE, Potter SS, Overbeek P, Kuehn MR (1996) Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381:158–161

    PubMed  CAS  Google Scholar 

  • Luo G, Hofmann C, Bronckers ALJJ, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820

    PubMed  CAS  Google Scholar 

  • Lustig KD, Kroll K, Sun E, Ramos R, Elmendorf H, Kirschner MW (1996) A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation. Development 122:3275–3282

    PubMed  CAS  Google Scholar 

  • Lyons KM, Hogan BLM, Robertson EJ (1995) Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev 50:71–83

    PubMed  CAS  Google Scholar 

  • Macias D, Gañan Y, Sampath TK, Piedra ME, Ros MA, Hurle JM (1997) Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124:1109–1117

    PubMed  CAS  Google Scholar 

  • Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL (1996) MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signalling. Cell 87:1215–1224

    PubMed  CAS  Google Scholar 

  • Manova K, Paynton BV, Bachvarova RF (1992) Expression of activins and TGFβ1 and p2 RNAs in early postimplantation mouse embryos and uterine decidua. Mech Dev 36:141–152

    PubMed  CAS  Google Scholar 

  • Manova K, DeLeon V, Angeles M, Kalantry S, Giarre M, Attisano L, Wrana JL, Bachvarova RF (1994) mRNAs for activin receptors II and IIB are expressed in mouse oocytes and in the epiblast of pregastrula and gastrula stage mouse embryos. Mech Dev 49:3–11

    Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun LZ, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M, Willson JKV (1995) Inactivation of the Type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    PubMed  CAS  Google Scholar 

  • Markowitz SD, Roberts AB (1996) Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine Growth Fact Rev 7:93–102

    CAS  Google Scholar 

  • Massagué J (1996) TGFβ signalling: receptors, transducers and MAD proteins. Cell 85:947–950

    PubMed  Google Scholar 

  • Massagué J, Weis-Garcia F (1996) Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. In: Pawson T, Parker P (eds) Cancer surveys cell signalling, vol 27. ICRF Press, London, pp 41–64

    Google Scholar 

  • Matzuk MM, Finegold MJ, Su J-GJ, Hsueh AJW, Bradley A (1992) a-Inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360:313–319

    PubMed  CAS  Google Scholar 

  • Matzuk MM, Finegold MJ, Mishina Y, Bradley A, Behringer RR (1995a) Synergistic effects of inhibins and Müllerian-inhibiting substance on testicular tumorigenesis. Mol Endocrinol 9:1337–1345

    CAS  Google Scholar 

  • Matzuk MM, Kumar TR, Bradley A (1995b) Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374:356–359

    PubMed  CAS  Google Scholar 

  • Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, Bradley A (1995c) Functional analysis of activins during mammalian development. Nature 374:354–356

    PubMed  CAS  Google Scholar 

  • McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murell J, McCormick MD, Pericak-Vance MA, Heutink P, Oostra BA, Haitjema T, Westerman CJ, Porteous ME, Guttmacher AE, Letarte M, Marchuk DA (1994) Endoglin, a TGF-ß binding protein of endothelial cells is the gene for hereditary haemorrhagic telangiectasia type I. Nature Genet 8:345–351

    PubMed  CAS  Google Scholar 

  • Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, Toyoda Y, Hamada H (1996) Left-right asymmetric expression of the TGFß-family member Lefty in mouse embryos. Nature 381:151–155

    PubMed  CAS  Google Scholar 

  • Mishina Y, Suzuki A, Ueno N, Behringer RR (1995) Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9:3027–3037

    PubMed  CAS  Google Scholar 

  • Mishina Y, Rey R, Finegold MJ, Matzuk MM, Josso N, Cate RL, Behringer RR (1996) Genetic analysis of the Müllerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev 10:2577–2587

    PubMed  CAS  Google Scholar 

  • Mitrani E, Ziv T, Thomsen G, Shimoni Y, Melton DA, Bril A (1990) Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 63:495–501

    PubMed  CAS  Google Scholar 

  • Miyazono K, ten Dijke P, Ichijo H, Heldin C-H (1994) Receptors for transforming growth factor-ß. Adv Immunol 55:181–220

    PubMed  CAS  Google Scholar 

  • Moos M Jr, Wang S, Krinks M (1995) Anti-dorsalizing morphogenetic protein is a novel TGF-ß homolog expressed in the Spemann organizer. Development 121:4293–4301

    PubMed  CAS  Google Scholar 

  • Myeroff LL, Parsons R, Kim S-J, Hedrick L, Cho KR, Orth K, Mathis M, Kinzler KW, Lutterbaugh J, Park K, Bang Y-J, Lee HY, Park J-G, Lynch HT, Roberts AB, Vogelstein B, Markowitz SD (1995) A transforming growth factor ß receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 55:5545–5547

    PubMed  CAS  Google Scholar 

  • Nagatake M, Takagi Y, Osada H, Uchida K, Mitsudomi T, Saji S, Shimokata K, Takahashi T, Takahashi T (1996) Somatic in vivo alteration of the DPC4 gene at 18q21 in human lung cancers. Cancer Res 56:2718–2720

    PubMed  CAS  Google Scholar 

  • Nakao A, Röijer E, Imamura T, Souchelnytskyi S, Stenman G, Heldin C-H, ten Dijke P (1997) Identification of Smad2, a human Mad-related protein in the transforming growth factor ß signaling pathway. J Biol Chem 272:2896–2900

    PubMed  CAS  Google Scholar 

  • Nellen D, Affolter M, Basler K (1994) Receptor ser/thr kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell 78:225–237

    PubMed  CAS  Google Scholar 

  • Nellen D, Burke R, Struhl G, Basler K (1996) Direct and long-range action of a DPP morphogen gradient. Cell 85:357–368

    PubMed  CAS  Google Scholar 

  • Newfeld SJ, Chartoff EH, Graff JM, Melton DA, Gelbart WM (1996) Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGFß responsive cells. Development 122:2099–2108

    PubMed  CAS  Google Scholar 

  • Nohno T, Ishikawa T, Saito T, Hosokawa K, Noji S, Wolsing DH, Rosenbaum JS (1995) Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J Biol Chem 270:22522–22526

    PubMed  CAS  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Rouxs Arch Dev Biol 183:267–282

    Google Scholar 

  • Oda S, Nishimatsu S-I, Murakami K, Ueno N (1995) Molecular cloning and functional analysis of a new activin b subunit: a dorsal mesoderm-inducing activity in Xenopus. Biochem Biophys Res Commun 210:581–588

    PubMed  CAS  Google Scholar 

  • Park K, Kim S-J, Bang Y-J, Park J-G, Kim NK, Roberts AB, Sporn MB (1994) Genetic changes in the transforming growth factor ß (TGF-ß) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-ß. Proc Natl Acad Sci USA 91:8772–8776

    PubMed  CAS  Google Scholar 

  • Penton A, Chen Y, Staehling-Hampton K, Wrana JL, Attisano L, Szidonya J, Cassill A, Massague J, Hoffmann FM (1994) Identification of two bone morphogenetic protein type I receptors in drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 78:239–250

    PubMed  CAS  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    PubMed  CAS  Google Scholar 

  • Raftery LA, Twombly V, Wharton K, Gelbart WM (1995) Genetic screens to identify elements of the decapentaplegic signaling pathway in drosophila. Genetics 139:241–254

    PubMed  CAS  Google Scholar 

  • Reilly KM, Melton DA (1996) Short-range signaling by candidate morphogens of the TGFß family and evidence for a relay mechanism of induction. Cell 86:743–754

    PubMed  CAS  Google Scholar 

  • Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B (1996) MAD-related genes in the human. Nature Genet 13:347–349

    PubMed  CAS  Google Scholar 

  • Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981) New class of transforming growth factors potentiated by epidermal growth factor. Proc Natl Acad Sci USA 78:5339–5343

    PubMed  CAS  Google Scholar 

  • Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin CH, Miyazono K (1995)Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 92:7632–7636

    PubMed  CAS  Google Scholar 

  • Ruberte E, Marty T, Nellen D, Affolter M, Basler K (1995) An absolute requirement for both the type II and type I receptors, punt and thick veins for dpp signalling in vivo. Cell 80:889–897

    PubMed  CAS  Google Scholar 

  • Rustgi AK (1996) MAD about colorectal cancer. Gastroenterology 111:1387–1389

    PubMed  CAS  Google Scholar 

  • Ryden M, Imamura T, Jornvall H, Neveu I, Trupp M, Belluardo N, Okadome T, ten Dijke P, Ibanez CF (1996)A novel type I receptor serine-threonine kinase predominantly expressed in the adult central nervous system. J Biol Chem 271:30603–30609

    PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and BMP-4 antagonistic patterning signals in Xenopus. Nature 376:333–336

    PubMed  CAS  Google Scholar 

  • Savage C, Das P, Finelli A, Townsend S, Sun C, Baird S, Padgett R (1996) Caenorhabditis elegans genes sma-2, sma-3 and sma-4 define a conserved family of transforming growth factor (3 pathway components. Proc Natl Acad Sci USA 93:790–794

    PubMed  CAS  Google Scholar 

  • Schulte-Merker S, Smith JC, Dale L (1994) Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVgl and activin: does activin play a role in mesoderm induction? EMBO J 13:3533–3541

    PubMed  CAS  Google Scholar 

  • Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347–1358

    PubMed  CAS  Google Scholar 

  • Seleiro EAP, Connolly DJ, Cooke J (1996) Early development expression and experimental axis determination by the chicken Vgl gene. Curr Biol 6:1476–1486

    PubMed  CAS  Google Scholar 

  • Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272:1179–1182

    PubMed  CAS  Google Scholar 

  • Slack JMW (1994) Inducing factors in Xenopus early embryos. Curr Biol 4:116–126

    PubMed  CAS  Google Scholar 

  • Smith J (1995) Angles on activin’s absence. Nature 374:311–312

    PubMed  CAS  Google Scholar 

  • Smith J (1996) How to tell a cell where it is. Nature 381:367–368

    PubMed  CAS  Google Scholar 

  • Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin C-H (1996) Phosphorylation of Serl65 in TGF-β type I receptor modulates TGF-βi-induced cellular responses. EMBO J 15:6231–6240

    PubMed  CAS  Google Scholar 

  • Staehling-Hampton K, Laughon AS, Hoffmann FM (1995) A Drosophila protein related to the human zinc-finger transcription factor PRDII/MBPI/HIV-EP1 is required for dpp signaling. Development 121:3393–3403

    PubMed  CAS  Google Scholar 

  • Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee S-J (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGFβ-superfamily. Nature 368:639–642

    PubMed  CAS  Google Scholar 

  • Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K, Saji S (1996) Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology 111:1369–1372

    PubMed  CAS  Google Scholar 

  • ten Dijke P, Miyazono K, Heldin C-H (1996) Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol 8:139–145

    PubMed  Google Scholar 

  • Thomas JT, Lin K, Nandedkar M, Camargo M, Cervanka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-β superfamily member. Nature Genet 12:315–317

    PubMed  CAS  Google Scholar 

  • Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63:485–493

    PubMed  CAS  Google Scholar 

  • Thomsen GH (1996) Xenopus Mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP2/4 receptor. Development 122:2359–2366

    PubMed  CAS  Google Scholar 

  • Thomsen GH (1997) Antagonism within and around the Spemann Organizer: BMP inhibitors in vertebrate body patterning. Trends Genet 13:209–211

    PubMed  CAS  Google Scholar 

  • Thomsen GH, Melton DA (1993) Processed Vgl protein is an axial mesoderm inducer in xenopus. Cell 74:433–441

    PubMed  CAS  Google Scholar 

  • Tickle C (1996) Vertebrate limb development. Cell Dev Biol 7:137–143

    Google Scholar 

  • Treanor JJS, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    PubMed  CAS  Google Scholar 

  • Trupp M, Arenas E, Fainzilber M, Nilsson A-S, Sieber B-A, Grigoriou M, Kilkenny C, Salazar-Grueso E, Pachnis V, Arumáe U, Sariola H, Saarma M, Ibáñez CF (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789

    PubMed  CAS  Google Scholar 

  • Tsuchida K, Vaughan JM, Wiater E, Gaddy-Kurten D, Vale WW (1995) Inactivation of activin-de-pendent transcription by kinase-deficient activin receptors. Endocrinology 136:5493–5503

    PubMed  CAS  Google Scholar 

  • Tsuchida K, Sawchenko PE, Nishikawa S, Vale WW (1996) Molecular cloning of a novel type I receptor serine/threonine kinase for the TGFβ superfamily from rat brain. Mol Cell Neurosci 7:467–478

    PubMed  CAS  Google Scholar 

  • Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, Matsuda Y, Matsuzawa Y (1996) High levels of transforming growth factor P in patients with colorectal cancer: association with disease progression. Gastroenterology 110:375–382

    PubMed  CAS  Google Scholar 

  • Varlet I, Collingnon J, Robertson EJ (1997) Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124:1033–1044

    PubMed  CAS  Google Scholar 

  • Vassalli A, Matzuk MM, Gardner HAR, Lee K-F, Jaenish R (1994) Activin/inhibin pB subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev 8:414–427

    PubMed  CAS  Google Scholar 

  • Weeks DL, Melton DA (1987) A maternal mRNA localized to the vegetal hemisphere in xenopus eggs codes for a growth factor related to TGF-β. Cell 51:861–867

    PubMed  CAS  Google Scholar 

  • Wiersdorff V, Lecuit T, Cohen SM, Mlodzik M (1996) Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signalling and propagation of morphogenesis in the drosophila eye. Development 122:2153–2162

    PubMed  CAS  Google Scholar 

  • Wieser R, Attisano L, Wrana JL, Massagué J (1993) Signalling activity of TGF-β type II receptors lacking specific domains in the cytoplasmic region. Mol Cell Biol 13:7239–7247

    PubMed  CAS  Google Scholar 

  • Wieser R, Wrana JL, Massague J (1995) GS domain mutations that constitutively activate TpR-I, the downstream signalling component in the TGF-β receptor complex. EMBO J 14:2199–2208

    PubMed  CAS  Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376:331–333

    PubMed  CAS  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BLM (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116

    PubMed  CAS  Google Scholar 

  • Wrana JL, Attisano L (1996) MAD-related proteins in TGFβ signalling. Trends Genet 12:493–496

    PubMed  CAS  Google Scholar 

  • Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang X-F, Massagué J (1992) TGF-β signals through a heteromeric protein kinase receptor complex. Cell 71:1003–1014

    PubMed  CAS  Google Scholar 

  • Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J (1994a) Mechanism of activation of the TGF-β receptor. Nature 370:341–347

    PubMed  CAS  Google Scholar 

  • Wrana JL, Tran H, Attisano L, Arora K, Childs SR, Massagué J, O’Connor MB (1994b) Two distinct transmembrane serine/threonine kinases from drosophila form an activin receptor complex. Mol Cell Biol 14:944–950

    PubMed  CAS  Google Scholar 

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of the TGF-β signal transduction. Science 270:2008–2011

    PubMed  CAS  Google Scholar 

  • Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M, Smith JC, Heldin C-H, Miyazono K (1995) Osteogenic protein-1 binds to activin type II receptors and induces certain activin-Iike effects. J Cell Biol 130:217–226

    PubMed  CAS  Google Scholar 

  • Yingling JM, Das P, Savage C, Zhang M, Padgett RW, Wang X-F (1996) Mammalian dwarfins are phosphorylated in response to TGF-β and are implicated in control of cell growth. Proc Natl Acad Sci USA 93:8940–8944

    PubMed  CAS  Google Scholar 

  • Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122:2977–2986

    PubMed  CAS  Google Scholar 

  • Zhang Y, Feng X-H, Wu R-Y, Derynck R (1996) Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature 383:168–172

    PubMed  CAS  Google Scholar 

  • Zhao GQ, Deng K, Labosky PA, Liaw L, Hogan BLM (1996) The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev 10:1657–1669

    PubMed  CAS  Google Scholar 

  • Zhou X, Sasaki H, Lowe L, Hogan BLM, Kuehn MR (1993) Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361:543–547

    PubMed  CAS  Google Scholar 

  • Zimmerman LB, De Jesús-Escobar JM, Harland R (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606

    PubMed  CAS  Google Scholar 

  • Zou H, Niswander L (1996) Requirement for BMP signaling in the interdigital apoptosis and scale formation. Science 272:738–741

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoodless, P.A., Wrana, J.L. (1998). Mechanism and Function of Signaling by the TGFβ Superfamily. In: Pawson, A.J. (eds) Protein Modules in Signal Transduction. Current Topics in Microbiology and Immunology, vol 228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80481-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80481-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80483-0

  • Online ISBN: 978-3-642-80481-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics