Skip to main content

Electronic Structure of Binary Systems

  • Conference paper
Frontiers in Materials Modelling and Design
  • 351 Accesses

Abstract

Tight-binding linear muffin-tin orbital (TB-LMTO) method based on the local density functional theory is one of the most efficient state-of-art computational tools which yields the ground state properties of solids with satisfactory accuracies. We have deployed this method to study the cohesive, electronic, and magnetic properties of ordered intermetallics, and also used it in conjunction with the augmented space recursion (ASR) technique to study the local properties of the corresponding random binary alloys. This TB-LMTO-ASR approach is more versatile than the conventional single-site coherent potential approximation based methods, especially for alloys having large off-diagonal disorders. We illustrate the applicability of these electronic structure computational tools for first principles investigations of binary transition metal aluminides FeAl, CoAl and NiAl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O.K. Andersen, O. Jepsen and D. Glötzel, in Highlights in Condensed Matter Theory, Eds. F. Bassani, F. Fumi and M.P. Tosi ( North-Holland, Amsterdam, 1985 ), p. 59.

    Google Scholar 

  2. J. Kühler and V. Eyert, in Materials Science and Technology, Vol. 4, Ed. R.W. Cahn, P. Haasen and E.J. Kramer (VCH, Weinheim, 1993), p.l.

    Google Scholar 

  3. A.J. Freeman and E. Wimmer, Ann. Rev. Mater.Sci. 25, 7 (1995).

    Article  ADS  Google Scholar 

  4. D.G. Pettifor, in Electron Theory in Alloy Design, Ed. D.G. Pettifor and A.H. Cottrell (The Institute of Materials, London, 1992), p. 81.

    Google Scholar 

  5. G.M. Stocks and A. Gonis (eds), Alloy Phase Stability, NATO-ASI Series E, Vol. 163 (Kluwer, Dordrecht, 1989).

    Google Scholar 

  6. R. Haydock, in Solid State Physics Vol. 35 Ed. Seitz and Turnbull (Academic Press, 1980), p.215; also see articles by V. Heine and M.J. Kelly in the same volume.

    Google Scholar 

  7. O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53 2571 (1984).

    Article  ADS  Google Scholar 

  8. O.K. Andersen, O. Jepsen and M. Sob, in Electronic Band Structure and Its Applications, Vol. 283 of Lecture Notes in Physics, Ed. M. Yussouff (Springer Verlag, Berlin, 1987), p.l.

    Google Scholar 

  9. J. Kudrnovski, V. Drachal and J. Masek, Phys. Rev. B 35, 2487 (1987).

    Article  ADS  Google Scholar 

  10. J. Kudrnovski and V. Drachal, Phys. Rev. B 41, 7515 (1990).

    Article  ADS  Google Scholar 

  11. T. Fujiwara, J. Non-Crystal. Solids 61–62, 1039 (1984).

    Article  ADS  Google Scholar 

  12. H.J. Nowak, O.K. Andersen, T. Fujiwara, O. Jepsen and P. Vargas, Phys. Rev. B 44, 3577 (1991).

    Article  ADS  Google Scholar 

  13. S.K. Bose, J. Kudrnovsky, O. Jepsen and O.K. Andersen, Phys. Rev. B 45, 8272 (1992).

    Article  ADS  Google Scholar 

  14. I. Baker and P.R. Munroe, in High Temperature Aluminides and Intermetallies, Ed. S.H. Whang, C.T. Liu and J.O. Steigler (The Minerals, Metals and Materials Society, 1990), p. 425.

    Google Scholar 

  15. U. Prakash, R.A. Buckley, H. Jones and C.M. Sellers, ISIJ International 31, 1113 (1991).

    Article  Google Scholar 

  16. R. Eibler and A. Neckel, J. Phys. F 10, 2179 (1980).

    Article  ADS  Google Scholar 

  17. S.C. Lui, J.W. Davenport, E.W. Plummer, D.M. Zehner and G.W. Fernando, Phys. Rev. B 42, 1582 (1990).

    Article  ADS  Google Scholar 

  18. P. Schultz and J.W. Davenport, J. Alloys Compounds 197, 229 (1993).

    Article  Google Scholar 

  19. T. Hong and A.J. Freeman, Phys. Rev. B 43, 6446 (1991).

    Article  ADS  Google Scholar 

  20. W. Lin, J. Xu and A.J. Freeman, J. Mater. Res. 7, 592 (1992).

    Article  ADS  Google Scholar 

  21. C.L. Fu and M.H. Yoo, Acta Metall. Mater. 40, 703 (1992).

    Article  Google Scholar 

  22. V. Sundararajan, B.R. Sahu, D.G. Kanhere, P.V. Panat and G.P. Das, J. Phys.: Condens. Matter 7 6019 (1995).

    Article  ADS  Google Scholar 

  23. I. Dasgupta, T. Saha, A. Mookerjee and G.P. Das, J. Phys.: Condens. Matter (1997), in press.

    Google Scholar 

  24. A. Arya, G.P. Das, S. Banerjee and M.J. Patni, to be published.

    Google Scholar 

  25. P.P. Singh and A. Gonis, Phys. Rev. B 49, 1642 (1994).

    Article  ADS  Google Scholar 

  26. A. Mookerjee, J. Phys. C 6 1340 (1973).

    ADS  Google Scholar 

  27. A. Mookerjee, in Lectures on Methods of Electronic Structure Calculations, eds. V. Kumar, O.K. Andersen and A. Mookerjee (World Scientific, Singapore, 1994), p. 193.

    Google Scholar 

  28. M.U. Lucini and C.M.M. Nex, J Phys C 20 3125 (1987)

    Google Scholar 

  29. W. Connolly and A.R. Williams. 27, 5169 (1993); also in The Elec¬tronic Structure of Complex Systems, Eds. W. Temmerman and P. Phariseau (Plenum Press, New York, 1984), p. 581.

    Chapter  Google Scholar 

  30. J.M. Sanchez, in Structural and Phase Stability of Alloys, eds. J.L. Moran-Lopez, F.Mejia-Lira and J.M. Sanchez (Plenum, New York, 1992), p. 151.

    Chapter  Google Scholar 

  31. T. Saha, I. Dasgupta and A. Mookerjee, J. Phys.: Condens. Matter 6, L245 (1994).

    Article  ADS  Google Scholar 

  32. A. Arya, G.P. Das, H.G. Salunke and S. Banerjee, J. Phys.: Condens. Matter 6, 3389 (1994).

    Article  ADS  Google Scholar 

  33. G.P. Das, A. Arya and S. Banerjee, Intermetallics 4, 625 (1996).

    Article  Google Scholar 

  34. B.I. Min, T. Oguchi, H.J.F. Hansen and A.J. Freeman, J. Magn. Magn. Mater. 54–57, 1091 (1986).

    Google Scholar 

  35. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, (American Society of Metals, Metals Park, Ohio, 1973 ).

    Google Scholar 

  36. V.L. Moruzzi, A.R. Williams and J.F. Janak, Phys. Rev. B 10, 4856 (1974).

    Article  ADS  Google Scholar 

  37. D.J. Nagel, L.L. Boyer, D.A. Papaconstantopoulos and B.M. Klein, in Proc. Int. Conf. on Transition Metals, (Inst. Phys. Conf. Ser. 39) Ed. M.J. Lee, M. Perz and E. Fawcett (Institute of Physics, Bristol, 1978), p. 104.

    Google Scholar 

  38. P. Chaddah and V.C. Sahni, Phil. Mag. B 37, 305 (1978).

    Google Scholar 

  39. J.C. Fuggle, F.U. Hillebrecht, R. Zeller, Z. Zolmerek, P.A. Bernett and Ch. Freiburg, Phys. Rev. B 27, 2145 (1983)

    Article  ADS  Google Scholar 

  40. G.M. Stocks, D.M. Nicholson, W.A. Shelton, G.A. Geist, F.J. Pinski, B. Ginatempo, A. Barbieri, B.L. Györffy, M. Sluiter, P.E.A. Turchi, Z. Szotek and W.M. Temmerman, in Kinetics of Ordering Transformations in Metals, ed. H. Chen and V.K. Vasudevan (The Minerals, Metals & Materials Society, 1992), p. 101.

    Google Scholar 

  41. M. Sluiter and P.P. Singh, Phys. Rev. B 49, 10918 (1994).

    Article  Google Scholar 

  42. M. Methfessel, Phys. Rev. B 38, 1537 (1988);

    Google Scholar 

  43. M. Methfessel C.O. Rodriguez and O.K. Andersen, Phys. Rev. B 40, 2009 (1989).

    Article  ADS  Google Scholar 

  44. O.K. Andersen, A.T. Paxton, O. Jepsen and M. van Schilfgaarde, unpublished.

    Google Scholar 

  45. Andersen O. K., Jepsen O. and Krier G., in Lectures on Methods of Electronic Structure Calculations, eds. V. Kumar, O.K. Andersen and A. Mookerjee (World Scientific, Singapore, 1994), p. 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Das, G.P. (1998). Electronic Structure of Binary Systems. In: Kumar, V., Sengupta, S., Raj, B. (eds) Frontiers in Materials Modelling and Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80478-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80478-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80480-9

  • Online ISBN: 978-3-642-80478-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics