First-Principles Thermodynamics of Alloys

  • J. M. Sanchez
Conference paper


The development of quantitative and predictive theories of phase stability for binary and multicomponent alloys has been a focus of intense activity during the last decade. Traditionally, a variety of empirical and semi-empirical theories of phase equilibrium have been successfully used to explain the main contributions to alloy phase stability, to interpret complex and extensive experimental data and, in general, to provide a solid understanding of trends in alloy and compound formation. At present, the challenge lies in the use of microscopic quantum theory and statistical mechanics to produce a fully ab-initio description of phase equilibrium and, in particular, phase diagrams. Here the basic elements of a first-principles statistical mechanics theory of alloy phase stability are presented. The theory is used to calculate the Zr-Nb phase diagram.


Phase Diagram Cluster Expansion Configurational Entropy Multicomponent Alloy Cluster Variation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Becker and J.M. Sanchez, J. Mater. Sci. A, 170, 161, (1993).CrossRefGoogle Scholar
  2. 2.
    A.E. Carlsson and J.M. Sanchez, Solid State Comm., 65, 527, (1988).ADSCrossRefGoogle Scholar
  3. 3.
    P.J. Craievich, J.M. Sanchez, R.E. Watson, and M. Weinert. Phys. Rev. B, (1997) (in press).Google Scholar
  4. 4.
    P.J. Craievich, M. Weinert, J.M. Sanchez, and R.E. Watson. Phys. Rev. Lett. 72, 3076, (1994).ADSCrossRefGoogle Scholar
  5. 5.
    C.E. Dahmani, M.C. Cadeville, J.M. Sanchez, and J.L. Moran-Lopez. Phys. Rev. Lett. 55, 1208, (1985).ADSCrossRefGoogle Scholar
  6. 6.
    R. Kikuchi, Phys. Rev., 81, 988, (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    R. Kikuchi, J.M. Sanchez, D. de Fontaine, and H. Yamauchi, Acta Metall., 28, 651, (1980).CrossRefGoogle Scholar
  8. 8.
    J.M. Sanchez, Phys. Rev. B, 48, 13, (1993).Google Scholar
  9. 9.
    J.M. Sanchez, In Theory and Applications of the Cluster Variation and Path Probability Methods, J.L. Moran Lopez and J.M. Sanchez, editors, New York, (1996).Google Scholar
  10. 10.
    J.M. Sanchez, J.D. Becker, and A.E. Carlsson. In Computer Aided Innovation of New Materials, M. Doyama, T. Suzuki, J. Kihara, and R. Yamamoto, editors, page 791. Elsevier Science Publishers, (1991).Google Scholar
  11. 11.
    J.M. Sanchez and D. de Fontaine. Phys. Rev. B, 17, 2926, (1978).CrossRefGoogle Scholar
  12. 12.
    J.M. Sanchez, F. Ducastelle, and D. Gratias. Physica A, 128, 334, (1984).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    C. Sigh and J.M. Sanchez. Acta Metall., 33,i 1097, (1985).CrossRefGoogle Scholar
  14. 14.
    J.M. Sanchez, J.P. Stark, and V.L. Moruzzi. Phys. Rev. B, 44, 5411, (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. M. Sanchez
    • 1
  1. 1.The University of Texas at AustinAustinUSA

Personalised recommendations