Skip to main content

Mechanics of Powder Compaction

  • Conference paper
Frontiers in Materials Modelling and Design

Abstract

In this work mechanics of metal powder compaction are investigated using a micromechanics based approach. Close packed arrangements under plane strain condition with two different starting relative densities are considered. These unit cells are studied for basic densification response in the relative density range 0.78 – 0.98. The material parameters are computed from the plane strain form of Shima and Oyane yield function[1] and are found to be in good agreement with the experimental results reported for Copper powder. This method allows us explain the yield function parameters from the mechanics of particle deformation. Initial pore shape, loading path, and material hardening are found to influence the yield function parameters and hence the yield surface at a given relative density. These studies show that the initial and evolving pore structure during densification is responsible for the path dependency of the macroscopic yield behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.Shima and O.Oyane, Int.J.Mech.Sci., 18, 285–291 (1976)

    Article  Google Scholar 

  2. S.Shima and T.Nakanishi, Computational Plasticity, Current Japanese Materials Research, 7.117–133 (eds. T.Inoue, H.Kitagawa and S.Shima -Elsevier Applied Science, 1990).

    Google Scholar 

  3. D.T.Gethin, R.W.Lewis, D.V.Tran and J.G.Ashoka, Advances in Powder Metallurgy & Particulate Materials, 11–27, Compiled by J.M.Capus and R.M. German. (1992)

    Google Scholar 

  4. S.M.Doraivelu, H.L.Gegel, J.S.Gunasekera, J.C Malas, J.T.Morgan and J.F Thomas, Int.J.Mech.Sci., 26, 527–535. (1984)

    Article  Google Scholar 

  5. RJ.Green, Int.J.Mech.Sci., 14, 215–224. (1972)

    Article  MATH  Google Scholar 

  6. D.N.Lee and H.S.Kim, Powder Metallurgy., 35, 275–279. (1992)

    Google Scholar 

  7. S.Shima and K.Mimura, Int.J.Mech.Sci., 28, 53–59 (1986)

    Article  Google Scholar 

  8. A.L.Gurson and T.J.McCabe, Compaction and Other Consolidation Processes, Advances in Powder Metallurgy & Particulate materials, 2, 133–145, Compiled by J.M. Capus and R.M. German. (1992)

    Google Scholar 

  9. N.A.Fleck, J.Mech.Phy.Solids, 43, 1409–1431 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. S.Shima and M.A.E.Saleh, Mechanics of materials, 16, 73–81 (1993)

    Article  Google Scholar 

  11. N.A.Fleck, L.T.Kuhn and R.M.McMeeking, J.Mech.Phy.Solids, 40, 1139–1162 (1992)

    Article  ADS  MATH  Google Scholar 

  12. N.Ogbonna and N.A.Fleck, Acta Metall. Mater., 43, 603–620 (1995)

    Article  Google Scholar 

  13. A.R.Akisanya, and A.C.F.Cocks, J.Mech.Phy.Solids, 43, 605–636 (1995)

    Article  ADS  MATH  Google Scholar 

  14. T.J.Watson and J.A.Wert, Metallurgical Transactions A, 24A, 2071–2081 (1993)

    Article  ADS  Google Scholar 

  15. B.Anil, Ch.PavanaChand and R.Krishnakumar, Int. J. Engg. Anal. Design, (to appear,1996).

    Google Scholar 

  16. Ch.PavanaChand and R.Krishnakumar, Commu. in Numer. Meth. in Engg., (to appear, 1996).

    Google Scholar 

  17. Ch.PavanaChand and R.Krishnakumar, Scripta Metall. Mater.(to appear, 1996).

    Google Scholar 

  18. Ch.PavanaChand and R.Krishnakumar, Acta Metall. Mater.(to appear, 1996).

    Google Scholar 

  19. R.W.Zimmermann, Trans. ASME, J. App. Mech. 53, 500–504 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

PavanaChand, C., KrishnaKumar, R. (1998). Mechanics of Powder Compaction. In: Kumar, V., Sengupta, S., Raj, B. (eds) Frontiers in Materials Modelling and Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80478-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80478-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80480-9

  • Online ISBN: 978-3-642-80478-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics