Skip to main content

Role of High Pressure in Designing Novel Phases

  • Conference paper
Frontiers in Materials Modelling and Design

Abstract

The role of high pressure in designing and synthesizing novel phases is brought out with several examples from the recent literature, including some results from our laboratory on the high temperature structural intermetallic Ti3Al. The results on Ti3Al are of significant importance in the quest for the cubic phase with better ductility and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Young, Phase Diagram of Elements (University of California Press, Berkeley, 1991).

    Google Scholar 

  2. R. Jeanloz, Annu. Rev. Phys. Chem. 40, 237 (1989).

    Article  ADS  Google Scholar 

  3. A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983);

    Article  ADS  Google Scholar 

  4. A. Jayaraman, Rev. Sci. Instrum. 57, 103 (1986).

    Article  Google Scholar 

  5. M. Eremets, High Pressure Experimental Methods, (Oxford University, Oxford, 1996).

    Google Scholar 

  6. R. Jeanloz, Annu. Rev. Phys. Chem. 40, 237 (1989).

    Article  ADS  Google Scholar 

  7. C.S. Yoo, J. Akella and M. Nicol, in: Advanced Materials’96, edited by M. Akaishi et al (NIRIM, Tokyo, 1996), p. 175.

    Google Scholar 

  8. K. Takemura and H. Yusa, in: Advanced Materials’96, edited by M. Akaishi et al (NIRIM, Tokyo, 1996), p.185.

    Google Scholar 

  9. A. Jayaraman, Metals Mater. Proces. 2, 1 (1990).

    Google Scholar 

  10. PCh. Sahu, N.V. Chandra Shekar, Mohammad Yousuf and k. Govinda Rajan, Phys. Rev. Lett. 78, 1054 (1997).

    Google Scholar 

  11. A.R. Mackintosh and O.K. Andersen, in: Electrons at the Fermi Surface, edited by M. Springford (Cambridge University, Cambridge, 1980), p. 149.

    Google Scholar 

  12. A.K. McMahan, J. Less Common Met. 147, 1 (1987).

    Google Scholar 

  13. R. Troamer, H. Muller, M. Cardona and P. Vogl, Phys. Rev. 21, 4869 (1980).

    Article  ADS  Google Scholar 

  14. K. Takemura, S. Minomura, O. Shimomura and Y. Fujii, Phys. Rev. Lett. 45, 1881 (1980).

    Article  ADS  Google Scholar 

  15. R. Reichlin et al, Phys. Rev. Lett. 62, 669 (1989).

    Article  ADS  Google Scholar 

  16. Y. Akahama, H. Kawamura, D. Hausermann, M. Hanfland and O. Shimomura, Phys. Rev. Lett. 74,4690 (1995).

    Article  ADS  Google Scholar 

  17. H.K. Mao and R.J. Hemley, Rev. Mod. Phys. 66, 671 (1994).

    Article  ADS  Google Scholar 

  18. N.W. Ashcroft, Phys. Rev. Lett. 21,1758 (1968);

    Google Scholar 

  19. N.W. Ashcroft, Phys. Rev B41, 10963 (1990).

    ADS  Google Scholar 

  20. S.T. Weir, A.C. Mitchell and W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  ADS  Google Scholar 

  21. A.K. McMahan, Physica B139/140, 31 (1986).

    Google Scholar 

  22. K. Takemura, S. Minomura and O. Shimomura, Phys. Rev. Lett. 49, 1772 (1982).

    Article  ADS  Google Scholar 

  23. O. Eriksson, M.S.S. Brooks and B. Johansson, Phys. Rev. 41, 7311 (1990).

    Article  ADS  Google Scholar 

  24. U. Benedict and W.B. Holzapfel, in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 17, edited by K.A. Gschneidner, Jr. et al, (North-Holland, Amsterdam, 1993), p. 245.

    Google Scholar 

  25. U. Benedict, J. Alloys Comp. 193, 88 (1993).

    Article  Google Scholar 

  26. A.K. McMahan, Phys. Rev. B29, 5982 (1984).

    ADS  Google Scholar 

  27. D.D. Koelling, Rep. Prog. Phys. 44, 139 (1981).

    Article  ADS  Google Scholar 

  28. P. Loubeyre and R. LeToullec, Nature 378, 44 (1995).

    Article  ADS  Google Scholar 

  29. M.S. Somayazulu, L.W. Finger, R.J. Hemley and H.K. Mao, Science 271, 1400 (1996).

    Article  ADS  Google Scholar 

  30. S.M. Sharma and S.K. Sikka, Prog. Mater. Sci. 40, 1 (1996).

    Article  Google Scholar 

  31. F.P. Bundy, H.T. Hall, H.M. Strong and R.H. Wentorf, Jr., Nature 176, 51 (1955).

    Article  ADS  Google Scholar 

  32. R.H. Wentorf, Jr., J. Chem. Phys. 34, 809 (1961).

    Article  ADS  Google Scholar 

  33. A.L. Ruoff, in: Materials Science and Technology, Vol. 5, edited by R.W. Cahn, P. Haasen and E.J. Kramer (VCH, Weinheim, 1991), p. 473.

    Google Scholar 

  34. V.L. Solozhenko, in: Advanced Materials’96, edited by M. Akaishi et al (NIRIM, Tokyo, 1996), p.119.

    Google Scholar 

  35. M. Nicol et al, in: Proceedings of the International Conference on Condensed Matter Under High Pressure,, Mumbai (India), 1996 (to be published).

    Google Scholar 

  36. N.V. Chandra Shekar, K. Takemura and H. Yusa, High Press. Res. (in press).

    Google Scholar 

  37. H. Yusa, K. Takemura, Y. Matsui, H. Yamawaki and K. Aoki, in: Advanced Materials’96, edited by M. Akaishi et al (NIRIM, Tokyo, 1996), p. 337.

    Google Scholar 

  38. L.J. Parker, T. Atou and J.V. Badding, Science 273, 95 (1996).

    Article  ADS  Google Scholar 

  39. R. Jeanloz, Annu. Rev. Earth Planet. Sci. 18, 357 (1990).

    Article  ADS  Google Scholar 

  40. S.J. Duclos et al, Nature 351, 380 (1991).

    Article  ADS  Google Scholar 

  41. M.N. Reguerio, P. Monceau and J.L. Hodeau, Nature 355, 237 (1992).

    Article  ADS  Google Scholar 

  42. L. Marques et al, Phys. Rev. B54, R12633 (1996).

    ADS  Google Scholar 

  43. C.S. Sundar et al, Phys. Rev. B53, 8180 (1996); also see the article in this book.

    ADS  Google Scholar 

  44. F. Banhart and P.M. Ajayan, Nature 382, 433 (1996).

    Article  ADS  Google Scholar 

  45. A.Y. Liu and M.L. Cohen, Science 245, 841 (1989);

    Article  ADS  Google Scholar 

  46. A.Y. Liu and M.L. Cohen, Phys. Rev. B41, 10727 (1990).

    ADS  Google Scholar 

  47. D.M. Teter and R.J. Hemley, Science 271, 53 (1996).

    Article  ADS  Google Scholar 

  48. P. Focher et al, Europhys. Lett. 26, 345 (1994).

    Article  ADS  Google Scholar 

  49. M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995).

    Article  ADS  Google Scholar 

  50. R. Car and M. Parinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  ADS  Google Scholar 

  51. M. Pannello, Solid State Commun. 102, 107 (1997).

    Article  ADS  Google Scholar 

  52. M. Pannello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).

    Article  ADS  Google Scholar 

  53. S. Scandolo et al, Phys. Rev. Lett. 74, 4015 (1995).

    Article  ADS  Google Scholar 

  54. M. Bernasconi et al, Phys. Rev. Lett. 76, 2081 (1996).

    Article  ADS  Google Scholar 

  55. F. Ancilotto et al, Science 275, 1288 (1997).

    Article  ADS  Google Scholar 

  56. J. Bishop et al, in: Neptune and Trilon, edited by D.P. Cruikshank (University of Arizona, Tucson, 1995), p. 427.

    Google Scholar 

  57. M.B. Fegley, Jr. and R. Prinn, J. Astrophys. 324, 625 (1988).

    Article  ADS  Google Scholar 

  58. Y.K. Vohra, in: Proceedings of the International Conference on Condensed Matter Under High Pressure, Mumbai (India), 1996 (to be published).

    Google Scholar 

  59. S. Satoh, H. Sumiya and N. Toda, in: Advanced Materials’96, edited by M. Akaishi et al (NIRIM, Tokyo, 1996), p.99.

    Google Scholar 

  60. C.W. Chu et al, Phys. Rev. Lett. 58,405 (1987);

    ADS  Google Scholar 

  61. C.W. Chu et al, Science 235, 567 (1987).

    Article  ADS  Google Scholar 

  62. J.G. Bednorz and K.A. Muller, Z. Phys. B64, 189 (1986).

    Article  ADS  Google Scholar 

  63. M.K. Wu et al, Phys. Rev. Lett. 58, 908 (1987).

    Article  ADS  Google Scholar 

  64. G. Sauthoff, in: Materials Science and Technology, Vol.8, edited by R.W. Cahn, P. Haasen and E. J. Kramer (VCH, Weinheim, 1996), p. 643.

    Google Scholar 

  65. M. Yamaguchi and Y. Umakoshi, Prog. Mater. Sci. 34, 1 (1990).

    Article  Google Scholar 

  66. C.L. Fu, J. Mater. Res. 5(5), 971 (1990).

    Article  ADS  Google Scholar 

  67. P.Ch. Sahu, Mohammad Yousuf, N.V. Chandra Shekar and K. Govinda Rajan, Rev. Sci. Instrum. 66, 295 (1995).

    Article  Google Scholar 

  68. J.H.N. Van Vucht, J. Less-Common Met. 11, 308 (1966).

    Article  Google Scholar 

  69. J.F. Cannon and H.T. Hall, J. Less-Common Met. 40, 313 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sahu, P.C., Govinda Rajan, K., Chandra Shekar, N.V., Yousuf, M. (1998). Role of High Pressure in Designing Novel Phases. In: Kumar, V., Sengupta, S., Raj, B. (eds) Frontiers in Materials Modelling and Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80478-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80478-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80480-9

  • Online ISBN: 978-3-642-80478-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics