Skip to main content

Quantum Adsorbates: Helium in Zeolites

  • Conference paper
Frontiers in Materials Modelling and Design

Abstract

Quantum effects on 3He and 4He sorption in silicalite were studied using Fourier path integral Monte Carlo simulations. A helium-silicalite interaction potential was constructed on the basis of the Kiselov model [4]. Simulations were performed over a temperature range of 7.5 K to 50 K. Quantum délocalisation was shown to reduce isosteric heats of sorption by upto 25%. Isotope effects, however, were found to be small. The instantaneous normal mode spectra calculated from the simulations are used to characterise the differnce between quantum and classical systems in terms of the frequencies dominating short-time dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrer, R. M., Zeolites and Clay Minerals as Sorbents and Molecular Sieves; Academic Press, New York, 1978.

    Google Scholar 

  2. Konishi, K., Deguchi, H.and Takeda, K. J. Phys.: Condens. Matter 1993, 5, 1619;

    Article  ADS  Google Scholar 

  3. Wada, N., Kato, H. and Watanabe, T. J. Low Temp. Phys. 1994, 95, 507;

    Article  ADS  Google Scholar 

  4. Kato, H., Ishioh, K., Wada, N., Ito, T. and Watanabe, T. J. Low Temp. Phys. 1987, 68, 321;

    Article  ADS  Google Scholar 

  5. Wada, N., Ishioh, K. and Watanabe, T. J. Phys. Soc. Japan 1992, 61, 931;

    Article  ADS  Google Scholar 

  6. Wada, N. and Kato, H. Physica B 1994, 194, 685.

    Article  ADS  Google Scholar 

  7. Fang, M. P. and Sokol, P. E., Phys. Rev. B 1995, 52, 12614;

    Article  ADS  Google Scholar 

  8. Fang, M. P., Sokol, P. E. and Wang, Y., Phys. Rev. B 1994, 5012291.

    Google Scholar 

  9. Kiselev, A. V., Lopatkin, A. A.and Shulga, A.A. Zeolites 1985, 5, 261.

    Article  Google Scholar 

  10. Doll, J. D., Freeman, D. L., and Beck, T. L., Adv. Chem. Phys. 1990, 78, 61.

    Article  Google Scholar 

  11. Chakravarty, C., J. Chem. Phys. 1995, 102, 956;

    Article  ADS  Google Scholar 

  12. Chakravarty, C., Mol. Phys. 1995, 84, 845;

    Article  ADS  Google Scholar 

  13. Chakravarty, C., Phys. Rev. Lett. 1995, 75, 1727;

    Article  ADS  Google Scholar 

  14. Chakravarty, C., J. Chem. Phys. 1995, 103, 10663;

    Article  ADS  Google Scholar 

  15. Chakravarty, C., J. Chem. Phys. 1996, 104, 7223.

    Article  ADS  Google Scholar 

  16. Chakravarty, C., J. Phys. Chem. (to be published).

    Google Scholar 

  17. R. M. Stratt, Acc. Chem. Res. 1995 28, 201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chakravarty, C., Thiruvengadaravi, K.V. (1998). Quantum Adsorbates: Helium in Zeolites. In: Kumar, V., Sengupta, S., Raj, B. (eds) Frontiers in Materials Modelling and Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80478-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80478-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80480-9

  • Online ISBN: 978-3-642-80478-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics