Advertisement

Steering and Isotope Effects in the Dissociative Adsorption of H2/Pd(100)

  • Axel Gross
  • Matthias Scheffler
Conference paper

Abstract

The interaction of hydrogen with many transition metal surfaces is characterized by a coexistence of activated with non-activated paths to adsorption with a broad distribution of barrier heights. By performing six-dimensional quantum dynamical and classical molecular dynamics calculations using the same potential energy surface derived from ab initio calculations for the system H2/Pd(100) we show that these features of the potential energy surface lead to strong steering effects in the dissociative adsorption dynamics. The adsorption dynamics shows only a small isotope effect which is purely due to the quantum nature of hydrogen.

Keywords

Potential Energy Surface Isotope Effect Dissociative Adsorption Initial Kinetic Energy Sticking Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.D. Rendulic and A. Winkler, Surf. Sci. 299/300, 261 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    S. Holloway, Surf. Sci. 299/300, 656 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Darling and S. Holloway, Rep. Prog. Phys. 58, 1595 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    A. Gross, Surf. Sci. 363, 1 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    B. Hammer, M. Scheffler, K.W. Jacobsen, and J.K. Nørskov, Phys. Rev. Lett. 73, 1400 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    J.A. White, D.M. Bird, M.C. Payne, and I. Stich, Phys. Rev. Lett. 73, 1404 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    S. Wilke and M. Scheffler, Surf. Sci. 329, L605 (1995);CrossRefGoogle Scholar
  8. S. Wilke and M. Scheffler, Phys. Rev. B 53, 4926 (1996).ADSCrossRefGoogle Scholar
  9. 8.
    S. Wilke and M. Scheffler, Phys. Rev. Lett. 76, 3380 (1996)ADSCrossRefGoogle Scholar
  10. 9.
    G. Wiesenekker, G.J. Kroes, and E.J. Baerends, J. Chem. Phys. 104, 7344 (1996).ADSCrossRefGoogle Scholar
  11. 10.
    A. Gross, S. Wilke, and M. Scheffler, Phys. Rev. Lett. 75, 2718 (1995).ADSCrossRefGoogle Scholar
  12. 11.
    K. D. Rendulic, G. Anger, and A. Winkler, Surf. Sci. 208, 404 (1989).ADSCrossRefGoogle Scholar
  13. 12.
    Ch. Resch, H. F. Berger, K. D. Rendulic, and E. Bertel, Surf. Sci. 316, L1105 (1994).CrossRefGoogle Scholar
  14. 13.
    H. F. Berger, Ch. Resch, E. Grösslinger, G. Eilmsteiner, A. Winkler, and K. D. Rendulic, Surf. Sci. 275, L627 (1992).CrossRefGoogle Scholar
  15. 14.
    D. A. Butler, B. E. Hayden, and J. D. Jones, Chem. Phys. Lett. 217, 423 (1994).ADSCrossRefGoogle Scholar
  16. 15.
    P. Alnot, A. Cassuto, and D. A. King, Surf. Sci. 215, 29 (1989).ADSCrossRefGoogle Scholar
  17. 16.
    D. A. Butler and B. E. Hayden, Chem. Phys. Lett. 232, 542 (1995).ADSCrossRefGoogle Scholar
  18. 17.
    St. J. Dixon-Warren, A. T. Pasteur, and D. A. King, Surf. Rev. and Lett. 1, 593 (1994).ADSCrossRefGoogle Scholar
  19. 18.
    M. Kay, G.R. Darling, S. Holloway, J.A. White, and D.M. Bird, Chem. Phys. Lett. 245, 311 (1995).ADSCrossRefGoogle Scholar
  20. 19.
    A. Gross, S. Wilke, and M. Scheffler, Surf. Sci. 357/358, 614 (1996).CrossRefGoogle Scholar
  21. 20.
    A. Gross and M. Scheffler, Chem. Phys. Lett. 256, 417 (1996).ADSCrossRefGoogle Scholar
  22. 21.
    J. P. Perdew J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhias, Phys. Rev. B 46, 6671 (1992).ADSCrossRefGoogle Scholar
  23. 22.
    P. Blaha, K. Schwarz, and R. Augustyn, WIEN93, Technical University of Vienna 1993.Google Scholar
  24. 23.
    B. Kohler, S. Wilke, M. Scheffler, R. Kouba, and C. Ambrosch-Draxl, Comput. Phys. Commun. 94, 31 (1996).ADSCrossRefGoogle Scholar
  25. 24.
    W. Brenig, T. Brunner, A. Gross, and R. Russ, Z. Phys. B 93, 91 (1993).ADSCrossRefGoogle Scholar
  26. 25.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1989.MATHGoogle Scholar
  27. 26.
    G.R. Darling and S. Holloway, J. Chem. Phys. 93, 9145 (1990).ADSCrossRefGoogle Scholar
  28. 27.
    A. Gross, J. Chem. Phys. 102, 5045 (1995).ADSCrossRefGoogle Scholar
  29. 28.
    R. Frisch and O. Stern, Z. Phys. 84, 430 (1933).ADSCrossRefGoogle Scholar
  30. 29.
    J.B. Pendry, Low energy electron diffraction, Academic Press, London (1974), p. 112.Google Scholar
  31. 30.
    A. Gross and M. Scheffler, Phys. Rev. Lett. 77, 405 (1996).ADSCrossRefGoogle Scholar
  32. 31.
    C.T. Rettner and D.J. Auerbach, Chem. Phys. Lett. 253, 236 (1996).ADSCrossRefGoogle Scholar
  33. 32.
    A. Gross and M. Scheffler, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Axel Gross
    • 1
  • Matthias Scheffler
    • 1
  1. 1.Fritz-Haber-InstitutDahlemGermany

Personalised recommendations